cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052829 A simple grammar: partial sums of A052870.

This page as a plain text file.
%I A052829 #24 Jan 13 2025 08:54:07
%S A052829 0,1,2,4,10,25,69,197,583,1762,5441,17042,54072,173334,560659,1827306,
%T A052829 5995570,19787135,65643226,218777532,732181107,2459576149,8290442750,
%U A052829 28031056619,95045477945,323112137130,1101073839413,3760472582922,12869488098939,44127605854574
%N A052829 A simple grammar: partial sums of A052870.
%H A052829 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=794">Encyclopedia of Combinatorial Structures 794</a>
%F A052829 G.f.: (x/(1-x))*Product_{k>=1} (1+x^k)^a(k). - _Vladeta Jovovic_, Jul 22 2004
%F A052829 G.f. A(x) satisfies: A(x) = (x/(1 - x)) * exp(Sum_{k>=1} (-1)^(k+1) * A(x^k) / k). - _Ilya Gutkovskiy_, Jun 28 2021
%p A052829 spec := [S,{B=Sequence(Z,1 <= card),C=PowerSet(S),S=Prod(C,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
%Y A052829 Cf. A052870 (first differences).
%K A052829 easy,nonn
%O A052829 0,3
%A A052829 encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E A052829 More terms from _Alois P. Heinz_, Mar 16 2016