This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052832 #19 Jan 20 2025 06:29:43 %S A052832 0,0,2,6,36,240,2040,20160,231840,3024000,44271360,718502400, %T A052832 12813292800,249080832000,5243151513600,118824010905600, %U A052832 2884729655808000,74694359900160000,2054806272110592000,59849389401145344000,1840003788783992832000,59545276650123264000000 %N A052832 Expansion of e.g.f. log((-1+x)/(-1+x+x^2)). %C A052832 Old name was: A simple grammar. %H A052832 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=797">Encyclopedia of Combinatorial Structures 797</a> %F A052832 Recurrence: {a(1)=0, a(3)=6, a(2)=2, (n^3+3*n^2+2*n)*a(n)+(-4-2*n)*a(n+2)+a(n+3)}. %F A052832 (RootOf(_Z^2-_Z-1)^n*RootOf(_Z^2-_Z-1)+(1-RootOf(_Z^2-_Z-1))^(n+1)-1)*GAMMA(n+1)/RootOf(_Z^2-_Z-1)/(-1+RootOf(_Z^2-_Z-1)). %F A052832 D-finite with recurrence a(n) +2*(-n+1)*a(n-1) +(n-1)*(n-2)*(n-3)*a(n-3)=0. - _R. J. Mathar_, Jan 13 2025 %p A052832 spec := [S,{B=Prod(Z,C),C=Sequence(Z,1 <= card),S= Cycle(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20); %p A052832 # alternative %p A052832 A052832 := proc(n) %p A052832 log((-1+x)/(-1+x+x^2)); %p A052832 coeftayl(%,x=0,n)*n! ; %p A052832 end proc: %p A052832 seq(A052832(n),n=0..20) ; # _R. J. Mathar_, Jan 20 2025 %K A052832 easy,nonn %O A052832 0,3 %A A052832 encyclopedia(AT)pommard.inria.fr, Jan 25 2000 %E A052832 More terms from _Alois P. Heinz_, Mar 16 2016