This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052837 #25 Jan 30 2025 11:21:56 %S A052837 0,0,1,4,10,22,43,80,141,240,397,640,1011,1568,2395,3604,5360,7876, %T A052837 11460,16510,23588,33418,47006,65640,91085,125596,172215,234820, %U A052837 318579,430060,577920,773130,1030007,1366644,1806445,2378892,3121835,4082796,5322360,6916360 %N A052837 Number of partitions of 2n whose Ferrers-Young diagram allows more than one different domino tiling. %C A052837 The original name was: A simple grammar. %H A052837 Alois P. Heinz, <a href="/A052837/b052837.txt">Table of n, a(n) for n = 0..10000</a> %H A052837 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=804">Encyclopedia of Combinatorial Structures 804</a> %F A052837 G.f.: (exp(Sum_{j>=1} -x^j/((x^j-1)*j) )-1)^2. %F A052837 a(n) = Sum_{k>=2} A304789(n,k). - _Alois P. Heinz_, May 26 2018 %p A052837 spec := [S,{C=Sequence(Z,1 <= card),B=Set(C,1 <= card),S=Prod(B,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); %p A052837 # second Maple program: %p A052837 a:= n-> (p-> add(p(j)*p(n-j), j=1..n-1))(combinat[numbpart]): %p A052837 seq(a(n), n=0..40); # _Alois P. Heinz_, May 26 2018 %t A052837 a[n_] := If[n <= 1, 0, With[{pp = Array[PartitionsP, n-1]}, %t A052837 First[ListConvolve[pp, pp]]]]; %t A052837 Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Jan 30 2025 *) %Y A052837 Essentially the same as A048574. %Y A052837 Cf. A000712, A304789. %K A052837 easy,nonn %O A052837 0,4 %A A052837 encyclopedia(AT)pommard.inria.fr, Jan 25 2000 %E A052837 More terms from _Franklin T. Adams-Watters_, Feb 08 2006 %E A052837 New name from _Alois P. Heinz_, May 26 2018