cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052839 Number of partitions of n into distinct summands (A000009), plus 1 (apart from the first term).

This page as a plain text file.
%I A052839 #13 May 07 2020 06:47:55
%S A052839 1,2,2,3,3,4,5,6,7,9,11,13,16,19,23,28,33,39,47,55,65,77,90,105,123,
%T A052839 143,166,193,223,257,297,341,391,449,513,586,669,761,865,983,1114,
%U A052839 1261,1427,1611,1817,2049,2305,2591,2911,3265,3659,4098,4583,5121,5719,6379
%N A052839 Number of partitions of n into distinct summands (A000009), plus 1 (apart from the first term).
%H A052839 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=806">Encyclopedia of Combinatorial Structures 806</a>
%F A052839 G.f.: (-x-exp(Sum(-(-1)^(j[1]+1)*x^j[1]/(x^j[1]-1)/j[1], j[1]=1 .. infinity))+exp(Sum(-(-1)^(j[1]+1)*x^j[1]/(x^j[1]-1)/j[1], j[1]=1 .. infinity))*x)/(-1+x)
%p A052839 spec := [S,{C=Sequence(Z,1 <= card),B=PowerSet(C),S=Union(B,C)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..67);
%p A052839 Or: with(gfun,seriestolist); seriestolist(series(mul(1+z^i,i=1..81)+z/(1-z),z,81));
%t A052839 a[n_] := If[n == 0, 1, PartitionsQ[n] + 1];
%t A052839 a /@ Range[0, 55] (* _Jean-François Alcover_, May 07 2020 *)
%Y A052839 Apart from the first term equals A000009 + 1 and also the left edge of A068049.
%K A052839 easy,nonn
%O A052839 0,2
%A A052839 encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E A052839 Edited by _Antti Karttunen_, Feb 13 2002, based on information received from Bruno Salvy.