cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052891 Number of objects generated by the Combstruct grammar defined in the Maple program. See the link for the grammar specification.

This page as a plain text file.
%I A052891 #16 Aug 10 2020 02:00:34
%S A052891 0,1,2,5,16,56,217,876,3686,15903,70103,314042,1426076,6548060,
%T A052891 30352695,141837086,667469159,3160370217,15045244375,71970393570,
%U A052891 345766441537,1667629158127,8071308125136,39190243658297,190845259909328,931856232714004,4561292365652751
%N A052891 Number of objects generated by the Combstruct grammar defined in the Maple program. See the link for the grammar specification.
%H A052891 Andrew Howroyd, <a href="/A052891/b052891.txt">Table of n, a(n) for n = 0..200</a>
%H A052891 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=867">Encyclopedia of Combinatorial Structures 867</a>
%H A052891 Maplesoft, <a href="https://www.maplesoft.com/support/help/Maple/view.aspx?path=examples%2fcombstruct_grammars">Combstruct grammars</a>.
%F A052891 G.f.: 1 - 1/g(x) where g(x) is the g.f. of A052893. - _Andrew Howroyd_, Aug 09 2020
%p A052891 spec := [S, {C=Prod(Z,B), S=Set(C,1 <= card), B=Sequence(S)}, unlabeled]:
%p A052891 seq(combstruct[count](spec,size=n), n=0..20);
%o A052891 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
%o A052891 seq(n)={my(v=[0]); for(n=1, n, v=concat([0],EulerT(Vec(1/(1-Ser(v)))))); v} \\ _Andrew Howroyd_, Aug 09 2020
%Y A052891 Cf. A052893.
%K A052891 easy,nonn
%O A052891 0,3
%A A052891 encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E A052891 Terms a(21) and beyond from _Andrew Howroyd_, Aug 09 2020