cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052893 Number of objects generated by the Combstruct grammar defined in the Maple program. See the link for the grammar specification.

This page as a plain text file.
%I A052893 #23 Aug 10 2020 02:01:21
%S A052893 1,1,3,10,37,144,589,2483,10746,47420,212668,966324,4439540,20587286,
%T A052893 96237484,453012296,2145478716,10215922013,48877938369,234862013473,
%U A052893 1132902329028,5483947191651,26630419098206,129696204701807,633339363924611,3100369991303297
%N A052893 Number of objects generated by the Combstruct grammar defined in the Maple program. See the link for the grammar specification.
%C A052893 Number of free pure symmetric multifunctions with n + 1 unlabeled leaves. A free pure symmetric multifunction f in PSM is either (case 1) f = the leaf symbol "o", or (case 2) f = an expression of the form h[g_1, ..., g_k] where k > 0, h is in PSM, each of the g_i for i = 1, ..., k is in PSM, and for i < j we have g_i <= g_j under a canonical total ordering of PSM, such as the Mathematica ordering of expressions. - _Gus Wiseman_, Aug 02 2018
%H A052893 Alois P. Heinz, <a href="/A052893/b052893.txt">Table of n, a(n) for n = 0..1000</a>
%H A052893 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=869">Encyclopedia of Combinatorial Structures 869</a>
%H A052893 Maplesoft, <a href="https://www.maplesoft.com/support/help/Maple/view.aspx?path=examples%2fcombstruct_grammars">Combstruct grammars</a>.
%H A052893 Mathematica Reference, <a href="http://reference.wolfram.com/mathematica/ref/Orderless.html">Orderless</a>.
%F A052893 G.f.: 1/(1 - g(x)) where g(x) is the g.f. of A052891. - _Andrew Howroyd_, Aug 09 2020
%e A052893 From _Gus Wiseman_, Aug 02 2018: (Start)
%e A052893 The a(3) = 10 free pure symmetric multifunctions with 4 unlabeled leaves:
%e A052893   o[o[o[o]]]
%e A052893   o[o[o][o]]
%e A052893   o[o][o[o]]
%e A052893   o[o[o]][o]
%e A052893   o[o][o][o]
%e A052893   o[o[o,o]]
%e A052893   o[o,o[o]]
%e A052893   o[o][o,o]
%e A052893   o[o,o][o]
%e A052893   o[o,o,o]
%e A052893 (End)
%p A052893 spec := [S, {C = Set(B,1 <= card), B=Prod(Z,S), S=Sequence(C)}, unlabeled]:
%p A052893 seq(combstruct[count](spec, size=n), n=0..20);
%t A052893 multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
%t A052893 a[n_]:=a[n]=If[n==1,1,Sum[a[k]*Sum[Product[multing[a[First[s]],Length[s]],{s,Split[p]}],{p,IntegerPartitions[n-k]}],{k,1,n-1}]];
%t A052893 Array[a,30] (* _Gus Wiseman_, Aug 02 2018 *)
%o A052893 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
%o A052893 seq(n)={my(v=[1]); for(n=1, n, v=Vec(1/(1-x*Ser(EulerT(v))))); v} \\ _Andrew Howroyd_, Aug 09 2020
%Y A052893 Cf. A001003, A052891, A277996, A279944, A280000.
%K A052893 easy,nonn
%O A052893 0,3
%A A052893 encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E A052893 More terms from _Gus Wiseman_, Aug 02 2018