This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052910 #25 Jul 02 2025 16:01:58 %S A052910 1,2,4,8,18,40,88,194,428,944,2082,4592,10128,22338,49268,108664, %T A052910 239666,528600,1165864,2571394,5671388,12508640,27588674,60848736, %U A052910 134206112,296000898,652850532,1439907176,3175815250,7004481032 %N A052910 Expansion of 1 + 2/(1-2*x-x^3). %H A052910 G. C. Greubel, <a href="/A052910/b052910.txt">Table of n, a(n) for n = 0..1000</a> %H A052910 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=890">Encyclopedia of Combinatorial Structures 890</a> %H A052910 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,1). %F A052910 G.f.: (1-x^3)/(1-2*x-x^3). %F A052910 a(n) = 2*a(n-1) + a(n-3), with a(0)=1, a(1)=2, a(2)=4, a(3)=8. %F A052910 a(n) = Sum_{alpha=RootOf(-1 + 2*z + z^3)} (2/59)*(12 -8*alpha + 9*alpha^2)*alpha^(-1-n). %F A052910 a(n) = A008998(n) - A008998(n-3). - _R. J. Mathar_, Nov 28 2011 %p A052910 spec := [S,{S=Sequence(Prod(Sequence(Prod(Z,Z,Z)),Union(Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); %t A052910 Join[{1},LinearRecurrence[{2,0,1},{2,4,8},30]] (* _Harvey P. Dale_, Jun 07 2012 *) %o A052910 (PARI) my(x='x+O('x^30)); Vec((1-x^3)/(1-2*x-x^3)) \\ _G. C. Greubel_, Oct 15 2019 %o A052910 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x^3)/(1-2*x-x^3) )); // _G. C. Greubel_, Oct 15 2019 %o A052910 (Sage) %o A052910 def A052910_list(prec): %o A052910 P.<x> = PowerSeriesRing(ZZ, prec) %o A052910 return P((1-x^3)/(1-2*x-x^3)).list() %o A052910 A052910_list(30) # _G. C. Greubel_, Oct 15 2019 %o A052910 (GAP) a:=[2,4,8];; for n in [4..30] do a[n]:=2*a[n-1]+a[n-3]; od; Concatenation([1], a); # _G. C. Greubel_, Oct 15 2019 %K A052910 easy,nonn %O A052910 0,2 %A A052910 encyclopedia(AT)pommard.inria.fr, Jan 25 2000 %E A052910 More terms from _James Sellers_, Jun 05 2000