This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052912 #36 Jul 02 2025 16:01:58 %S A052912 1,2,4,10,24,56,132,312,736,1736,4096,9664,22800,53792,126912,299424, %T A052912 706432,1666688,3932224,9277312,21888000,51640448,121835520,287447040, %U A052912 678174976,1600020992,3774936064,8906222080,21012486144,49574844416 %N A052912 Expansion of 1/(1-2*x-2*x^3). %H A052912 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=892">Encyclopedia of Combinatorial Structures 892</a> %H A052912 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,2). %F A052912 G.f.: 1/(1 - 2*x - 2*x^3) %F A052912 a(n) = 2*a(n-1) +2*a(n-3). %F A052912 a(n) = Sum_{alpha = RootOf(-1 + 2*z + 2*z^3)} (1/43)*(8 + 9*alpha + 12*alpha^2)*alpha^(-1-n). %F A052912 a(n) = Sum_{k=0..n} binomial(k, floor((n-k)/2)) * 2^k * (1+(-1)^(n-k))/2. - _Paul Barry_, Jan 12 2006 %F A052912 G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 + 2*x^2)/( x*(4*k+4 + 2*x^2) + 1/Q(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Aug 30 2013 %F A052912 a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k)*2^(n-2*k). - _Greg Dresden_, Aug 03 2024 %p A052912 spec := [S,{S=Sequence(Union(Prod(Union(Z,Z),Z,Z),Z,Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); %p A052912 seq(coeff(series(1/(1-2*x-2*x^3), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Oct 15 2019 %t A052912 LinearRecurrence[{2,0,2}, {1,2,4}, 30] (* _G. C. Greubel_, Oct 15 2019 *) %o A052912 (PARI) my(x='x+O('x^30)); Vec(1/(1-2*x-2*x^3)) \\ _G. C. Greubel_, Oct 15 2019 %o A052912 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^3) )); // _G. C. Greubel_, Oct 15 2019 %o A052912 (Sage) %o A052912 def A052912_list(prec): %o A052912 P.<x> = PowerSeriesRing(ZZ, prec) %o A052912 return P(1/(1-2*x-2*x^3)).list() %o A052912 A052912_list(30) # _G. C. Greubel_, Oct 15 2019 %o A052912 (GAP) a:=[1,2,4];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-3]; od; a; # _G. C. Greubel_, Oct 15 2019 %Y A052912 Cf. A000930. %K A052912 easy,nonn %O A052912 0,2 %A A052912 encyclopedia(AT)pommard.inria.fr, Jan 25 2000 %E A052912 More terms from _James Sellers_, Jun 05 2000