This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052913 #81 Sep 08 2022 08:44:59 %S A052913 1,4,18,82,374,1706,7782,35498,161926,738634,3369318,15369322, %T A052913 70107974,319801226,1458790182,6654348458,30354161926,138462112714, %U A052913 631602239718,2881086973162,13142230386374,59948977985546,273460429154982,1247404189803818,5690100090709126 %N A052913 a(n+2) = 5*a(n+1) - 2*a(n), with a(0) = 1, a(1) = 4. %C A052913 Main diagonal of the array: m(1,j)=3^(j-1), m(i,1)=1; m(i,j) = m(i-1,j) + m(i,j-1): 1 3 9 27 81 ... / 1 4 13 40 ... / 1 5 18 58 ... / 1 6 24 82 ... - _Benoit Cloitre_, Aug 05 2002 %C A052913 a(n) is also the number of 3 X n matrices of integers for which the upper-left hand corner is a 1, the rows and columns are weakly increasing, and two adjacent entries differ by at most 1. - _Richard Stanley_, Jun 06 2010 %C A052913 a(n) is the number of compositions of n when there are 4 types of 1 and 2 types of other natural numbers. - _Milan Janjic_, Aug 13 2010 %C A052913 If a Stern's sequence based enumeration system of positive irreducible fractions is considered (for example, A007305/A047679, or A162909/A162910, or A071766/A229742, or A245325/A245326, ...), and if it is organized by blocks or levels (n) with 2^n terms (n>=0), and the products numerator*denominator, term by term, are summed at each level n, then the resulting sequence of integers is a(n). - _Yosu Yurramendi_, May 23 2015 %C A052913 Number of 1’s in the substitution system {0 -> 110, 1 -> 11110} at step n from initial string "1" (1 -> 11110 -> 11110111101111011110110 -> ...) . - _Ilya Gutkovskiy_, Apr 10 2017 %H A052913 G. C. Greubel, <a href="/A052913/b052913.txt">Table of n, a(n) for n = 0..1000</a> %H A052913 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=894">Encyclopedia of Combinatorial Structures 894</a> %H A052913 J.-C. Novelli, J.-Y. Thibon, <a href="http://arxiv.org/abs/1403.5962">Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions</a>, arXiv preprint arXiv:1403.5962 [math.CO], 2014. %H A052913 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-2). %F A052913 G.f.: (1-x)/(1-5*x+2*x^2). %F A052913 a(n) = Sum_{alpha=RootOf(1 - 5*z + 2*z^2)} (1/17)*(3+alpha)*alpha^(-1-n). %F A052913 a(n) = ((17+3*sqrt(17))/34)*((5+sqrt(17))/2)^n + ((17-3*sqrt(17))/34)*((5-sqrt(17))/2)^n. - _N. J. A. Sloane_, Jun 03 2002 %F A052913 a(n) = A107839(n) - A107839(n-1). - _R. J. Mathar_, May 21 2015 %F A052913 a(n) = 2*A020698(n-1), n>1. - _R. J. Mathar_, Nov 23 2015 %F A052913 E.g.f.: (1/17)*exp(5*x/2)*(17*cosh(sqrt(17)*x/2) + 3*sqrt(17)*sinh(sqrt(17)*x/2)). - _Stefano Spezia_, Oct 16 2019 %F A052913 a(n) = 3*A107839(n-1) + (-1)^n*A152594(n) with A107839(-1) = 0. - _Klaus Purath_, Jul 29 2020 %p A052913 spec := [S,{S=Sequence(Union(Prod(Sequence(Z),Union(Z,Z)),Z,Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); %p A052913 seq(coeff(series((1-x)/(1-5*x+2*x^2), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Oct 16 2019 %t A052913 Transpose[NestList[{Last[#],5Last[#]-2First[#]}&, {1,4},20]][[1]] (* _Harvey P. Dale_, Mar 12 2011 *) %t A052913 LinearRecurrence[{5, -2}, {1, 4}, 25] (* _Jean-François Alcover_, Jan 08 2019 *) %o A052913 (PARI) Vec((1-x)/(1-5*x+2*x^2) + O(x^30)) \\ _Michel Marcus_, Mar 05 2015 %o A052913 (Magma) I:=[1,4]; [n le 2 select I[n] else 5*Self(n-1)-2*Self(n-2): n in [1..35]]; // _Vincenzo Librandi_, May 24 2015 %o A052913 (Sage) %o A052913 def A052913_list(prec): %o A052913 P.<x> = PowerSeriesRing(ZZ, prec) %o A052913 return P((1-x)/(1-5*x+2*x^2)).list() %o A052913 A052913_list(30) # _G. C. Greubel_, Oct 16 2019 %o A052913 (GAP) a:=[1,4];; for n in [3..30] do a[n]:=5*a[n-1]-2*a[n-2]; od; a; # _G. C. Greubel_, Oct 16 2019 %o A052913 (Magma) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!((1-x)/(1-5*x+2*x^2))); // _Marius A. Burtea_, Oct 16 2019 %Y A052913 Cf. A007482 (inverse binomial transform). %K A052913 easy,nonn %O A052913 0,2 %A A052913 encyclopedia(AT)pommard.inria.fr, Jan 25 2000 %E A052913 Typo in definition corrected by _Bruno Berselli_, Jun 07 2010