This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052945 #49 Jul 02 2025 16:01:58 %S A052945 1,2,5,14,38,104,284,776,2120,5792,15824,43232,118112,322688,881600, %T A052945 2408576,6580352,17977856,49116416,134188544,366609920,1001596928, %U A052945 2736413696,7476021248,20424869888,55801782272,152453304320 %N A052945 Number of compositions of n when each odd part can be of two kinds. %C A052945 Also number of compositions of n into 2 sorts of parts where the kinds of parts are unordered inside a run of identical parts, see example. Replacing "unordered" by "ordered" gives A025192. - _Joerg Arndt_, Apr 28 2013 %C A052945 Numbers of straight-chain fatty acids involving oxo groups (or hydroxy groups), if cis-/trans isomerism is considered while stereoisomerism is neglected. - _Stefan Schuster_, Apr 19 2018 %H A052945 G. C. Greubel, <a href="/A052945/b052945.txt">Table of n, a(n) for n = 0..1000</a> %H A052945 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1004">Encyclopedia of Combinatorial Structures 1004</a> %H A052945 S. Schuster, M. Fichtner and S. Sasso, <a href="https://www.nature.com/articles/srep39821.pdf">Use of Fibonacci numbers in lipidomics - Enumerating various classes of fatty acids</a>, Sci. Rep., 7 (2017) 39821. %H A052945 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,2). %F A052945 G.f.: (1 - x)*(1 + x)/(1 - 2*x - 2*x^2). %F A052945 a(n) = 2*(a(n-1) + a(n-2)). %F A052945 a(n) = Sum_{alpha=RootOf(-1+2*z+2z^2)} alpha^(-1-n)/4. %F A052945 From Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009: (Start) %F A052945 a(n) = ((2+sqrt(3))*(1+sqrt(3))^(n-1) + (2-sqrt(3))*(1-sqrt(3))^(n-1))/2 for n>0. %F A052945 First binomial transform of 2, 3, 6, 9, 18, 27, 54, 81, ... starting after 1. (End) %e A052945 a(3)=14 because we have (3),(3'),(1,2),(1',2),(2,1),(2,1'),(1,1,1),(1,1,1'),(1,1',1),(1,1',1'),(1',1,1),(1',1,1'),(1',1',1) and (1',1',1'). %e A052945 There are a(3)=14 such compositions of 3. Here p:s stands for "part p of sort s": %e A052945 01: [ 1:0 1:0 1:0 ] %e A052945 02: [ 1:0 1:0 1:1 ] %e A052945 03: [ 1:0 1:1 1:1 ] %e A052945 04: [ 1:0 2:0 ] %e A052945 05: [ 1:0 2:1 ] %e A052945 06: [ 1:1 1:1 1:1 ] %e A052945 07: [ 1:1 2:0 ] %e A052945 08: [ 1:1 2:1 ] %e A052945 09: [ 2:0 1:0 ] %e A052945 10: [ 2:0 1:1 ] %e A052945 11: [ 2:1 1:0 ] %e A052945 12: [ 2:1 1:1 ] %e A052945 13: [ 3:0 ] %e A052945 14: [ 3:1 ] %e A052945 - _Joerg Arndt_, Apr 28 2013 %p A052945 spec:= [S,{S=Sequence(Prod(Union(Sequence(Prod(Z,Z)),Sequence(Z)),Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20); %p A052945 seq(coeff(series((1-x^2)/(1-2*x-2*x^2), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Oct 18 2019 %t A052945 LinearRecurrence[{2,2,}, {1,2,5}, 30] (* _G. C. Greubel_, Oct 18 2019 *) %o A052945 (PARI) Vec((x-1)*(1+x)/(-1+2*x+2*x^2)+O(x^30)) \\ _Charles R Greathouse IV_, Nov 20 2011 %o A052945 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x^2)/(1-2*x-2*x^2) )); // _G. C. Greubel_, Oct 18 2019 %o A052945 (Sage) %o A052945 def A052945_list(prec): %o A052945 P.<x> = PowerSeriesRing(ZZ, prec) %o A052945 return P( (1-x^2)/(1-2*x-2*x^2) ).list() %o A052945 A052945_list(30) # _G. C. Greubel_, Oct 18 2019 %o A052945 (GAP) a:=[2,5];; for n in [3..30] do a[n]:=2*(a[n-1]+a[n-2]); od; Concatenation([1], a); # _G. C. Greubel_, Oct 18 2019 %Y A052945 Row sums of A105474. %K A052945 easy,nonn %O A052945 0,2 %A A052945 encyclopedia(AT)pommard.inria.fr, Jan 25 2000 %E A052945 More terms from _James Sellers_, Jun 05 2000 %E A052945 Better description from _Emeric Deutsch_, Apr 09 2005