cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052945 Number of compositions of n when each odd part can be of two kinds.

This page as a plain text file.
%I A052945 #49 Jul 02 2025 16:01:58
%S A052945 1,2,5,14,38,104,284,776,2120,5792,15824,43232,118112,322688,881600,
%T A052945 2408576,6580352,17977856,49116416,134188544,366609920,1001596928,
%U A052945 2736413696,7476021248,20424869888,55801782272,152453304320
%N A052945 Number of compositions of n when each odd part can be of two kinds.
%C A052945 Also number of compositions of n into 2 sorts of parts where the kinds of parts are unordered inside a run of identical parts, see example.  Replacing "unordered" by "ordered" gives A025192. - _Joerg Arndt_, Apr 28 2013
%C A052945 Numbers of straight-chain fatty acids involving oxo groups (or hydroxy groups), if cis-/trans isomerism is considered while stereoisomerism is neglected. - _Stefan Schuster_, Apr 19 2018
%H A052945 G. C. Greubel, <a href="/A052945/b052945.txt">Table of n, a(n) for n = 0..1000</a>
%H A052945 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1004">Encyclopedia of Combinatorial Structures 1004</a>
%H A052945 S. Schuster, M. Fichtner and S. Sasso, <a href="https://www.nature.com/articles/srep39821.pdf">Use of Fibonacci numbers in lipidomics - Enumerating various classes of fatty acids</a>, Sci. Rep., 7 (2017) 39821.
%H A052945 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,2).
%F A052945 G.f.: (1 - x)*(1 + x)/(1 - 2*x - 2*x^2).
%F A052945 a(n) = 2*(a(n-1) + a(n-2)).
%F A052945 a(n) = Sum_{alpha=RootOf(-1+2*z+2z^2)} alpha^(-1-n)/4.
%F A052945 From Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009: (Start)
%F A052945 a(n) = ((2+sqrt(3))*(1+sqrt(3))^(n-1) + (2-sqrt(3))*(1-sqrt(3))^(n-1))/2 for n>0.
%F A052945 First binomial transform of 2, 3, 6, 9, 18, 27, 54, 81, ... starting after 1. (End)
%e A052945 a(3)=14 because we have (3),(3'),(1,2),(1',2),(2,1),(2,1'),(1,1,1),(1,1,1'),(1,1',1),(1,1',1'),(1',1,1),(1',1,1'),(1',1',1) and (1',1',1').
%e A052945 There are a(3)=14 such compositions of 3. Here p:s stands for "part p of sort s":
%e A052945 01:  [ 1:0  1:0  1:0  ]
%e A052945 02:  [ 1:0  1:0  1:1  ]
%e A052945 03:  [ 1:0  1:1  1:1  ]
%e A052945 04:  [ 1:0  2:0  ]
%e A052945 05:  [ 1:0  2:1  ]
%e A052945 06:  [ 1:1  1:1  1:1  ]
%e A052945 07:  [ 1:1  2:0  ]
%e A052945 08:  [ 1:1  2:1  ]
%e A052945 09:  [ 2:0  1:0  ]
%e A052945 10:  [ 2:0  1:1  ]
%e A052945 11:  [ 2:1  1:0  ]
%e A052945 12:  [ 2:1  1:1  ]
%e A052945 13:  [ 3:0  ]
%e A052945 14:  [ 3:1  ]
%e A052945 - _Joerg Arndt_, Apr 28 2013
%p A052945 spec:= [S,{S=Sequence(Prod(Union(Sequence(Prod(Z,Z)),Sequence(Z)),Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
%p A052945 seq(coeff(series((1-x^2)/(1-2*x-2*x^2), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Oct 18 2019
%t A052945 LinearRecurrence[{2,2,}, {1,2,5}, 30] (* _G. C. Greubel_, Oct 18 2019 *)
%o A052945 (PARI) Vec((x-1)*(1+x)/(-1+2*x+2*x^2)+O(x^30)) \\ _Charles R Greathouse IV_, Nov 20 2011
%o A052945 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x^2)/(1-2*x-2*x^2) )); // _G. C. Greubel_, Oct 18 2019
%o A052945 (Sage)
%o A052945 def A052945_list(prec):
%o A052945     P.<x> = PowerSeriesRing(ZZ, prec)
%o A052945     return P( (1-x^2)/(1-2*x-2*x^2) ).list()
%o A052945 A052945_list(30) # _G. C. Greubel_, Oct 18 2019
%o A052945 (GAP) a:=[2,5];; for n in [3..30] do a[n]:=2*(a[n-1]+a[n-2]); od; Concatenation([1], a); # _G. C. Greubel_, Oct 18 2019
%Y A052945 Row sums of A105474.
%K A052945 easy,nonn
%O A052945 0,2
%A A052945 encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E A052945 More terms from _James Sellers_, Jun 05 2000
%E A052945 Better description from _Emeric Deutsch_, Apr 09 2005