This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052961 #64 Apr 04 2025 21:26:31 %S A052961 1,2,7,29,124,533,2293,9866,42451,182657,785932,3381689,14550649, %T A052961 62608178,269388943,1159120181,4987434076,21459809837,92336746957, %U A052961 397304305274,1709511285499,7355643511673,31649683701868,136181487974321,585958388766001,2521247479907042 %N A052961 Expansion of (1 - 3*x) / (1 - 5*x + 3*x^2). %C A052961 a(n) is the number of tilings of a 2 X n rectangle using integer dimension tiles at least one of whose dimensions is 1, so allowable dimensions are 1 X 1, 1 X 2, 1 X 3, 1 X 4, ..., and 2 X 1. - _David Callan_, Aug 27 2014 %C A052961 a(n+1) counts closed walks on K_2 containing one loop on the index vertex and four loops on the other vertex. Equivalently the (1,1)_entry of A^(n+1) where the adjacency matrix of digraph is A=(1,1;1,4). - _David Neil McGrath_, Nov 05 2014 %C A052961 A production matrix for the sequence is M = %C A052961 1, 1, 0, 0, 0, 0, 0, ... %C A052961 1, 0, 4, 0, 0, 0, 0, ... %C A052961 1, 0, 0, 4, 0, 0, 0, ... %C A052961 1, 0, 0, 0, 4, 0, 0, ... %C A052961 1, 0, 0, 0, 0, 4, 0, ... %C A052961 1, 0, 0, 0, 0, 0, 4, ... %C A052961 ... %C A052961 Take powers of M and extract the upper left term, getting the sequence starting (1, 1, 2, 7, 29, 124, ...). - _Gary W. Adamson_, Jul 22 2016 %C A052961 From _Gary W. Adamson_, Jul 29 2016: (Start) %C A052961 The sequence is N=1 in an infinite set obtained from matrix powers of [(1,N); (1,4)], extracting the upper left terms. %C A052961 The infinite set begins: %C A052961 N=1 (A052961): 1, 2, 7, 29 124, 533, 2293, ... %C A052961 N=2 (A052984): 1, 3, 13, 59, 269, 1227, 5597, ... %C A052961 N=3 (A004253): 1, 4, 19, 91, 436, 2089, 10009, ... %C A052961 N=4 (A000351): 1, 5, 25, 125, 625, 3125, 15625, ... %C A052961 N=5 (A015449): 1, 6, 31, 161, 836, 4341, 22541, ... %C A052961 N=6 (A124610): 1, 7, 37, 199, 1069, 5743, 30853, ... %C A052961 N=7 (A111363): 1, 8, 43, 239, 1324, 7337, 40653, ... %C A052961 N=8 (A123270): 1, 9, 49, 281, 1601, 9129, 52049, ... %C A052961 N=9 (A188168): 1, 10, 55, 325, 1900, 11125, 65125, ... %C A052961 N=10 (A092164): 1, 11, 61, 371, 2221, 13331, 79981, ... %C A052961 ... (End) %H A052961 Karl V. Keller, Jr., <a href="/A052961/b052961.txt">Table of n, a(n) for n = 0..1000</a> %H A052961 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1032">Encyclopedia of Combinatorial Structures 1032</a> %H A052961 Kai Liang, <a href="https://arxiv.org/abs/2503.17698">Solving tiling enumeration problems by tensor network contractions</a>, arXiv:2503.17698, March 2025. %H A052961 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-3). %F A052961 G.f.: (1-3*x)/(1-5*x+3*x^2). %F A052961 a(n) = 5*a(n-1) - 3*a(n-2), with a(0) = 1, a(1) = 2. %F A052961 a(n) = Sum_{alpha=RootOf(1-5*z+3*z^2)} (-1 + 9*alpha)*alpha^(-1-n)/13. %F A052961 E.g.f.: (1 + sqrt(13) + (sqrt(13)-1) * exp(sqrt(13)*x)) / (2*sqrt(13) * exp(((sqrt(13)-5)*x)/2)). - _Vaclav Kotesovec_, Feb 16 2015 %F A052961 a(n) = A116415(n) - 3*A116415(n-1). - _R. J. Mathar_, Feb 27 2019 %p A052961 spec:= [S,{S = Sequence(Union(Prod(Sequence(Union(Z,Z,Z)),Z),Z))}, unlabeled ]: seq(combstruct[count ](spec,size = n), n = 0..20); %p A052961 seq(coeff(series((1-3*x)/(1-5*x+3*x^2), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Oct 23 2019 %t A052961 CoefficientList[Series[(1-3x)/(1-5x+3x^2),{x,0,30}],x] (* or *) LinearRecurrence[{5,-3},{1,2},30] (* _Harvey P. Dale_, Nov 23 2013 *) %o A052961 (Magma) I:=[1,2]; [n le 2 select I[n] else 5*Self(n-1)-3*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 17 2014 %o A052961 (PARI) my(x='x+O('x^30)); Vec((1-3*x)/(1-5*x+3*x^2)) \\ _G. C. Greubel_, Oct 23 2019 %o A052961 (Sage) %o A052961 def A052961_list(prec): %o A052961 P.<x> = PowerSeriesRing(ZZ, prec) %o A052961 return P((1-3*x)/(1-5*x+3*x^2)).list() %o A052961 A052961_list(30) # _G. C. Greubel_, Oct 23 2019 %o A052961 (GAP) a:=[1,2];; for n in [3..30] do a[n]:=5*a[n-1]-3*a[n-2]; od; a; # _G. C. Greubel_, Oct 23 2019 %Y A052961 Column k=2 of A254414. %Y A052961 Cf. A000351, A004253, A015449, A052984, A092164, A111363, A123270, A124610, A188168. %K A052961 easy,nonn %O A052961 0,2 %A A052961 encyclopedia(AT)pommard.inria.fr, Jan 25 2000