This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053002 #33 Jul 02 2025 16:01:59 %S A053002 0,1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,8,36,1,2,5,2,1,1,2,2,6,9,1,1,1, %T A053002 3,1,2,6,1,5,1,1,2,1,13,2,2,5,1,2,2,1,5,1,3,1,3,1,2,2,2,2,8,3,1,2,2,1, %U A053002 10,2,2,2,3,3,1,7,1,8,3,1,1,1,1,1,1,1,1,5,2,1,2,17,1,4,31,2,2,5,30,1,8,2 %N A053002 Continued fraction for 1 / M(1,sqrt(2)) (Gauss's constant). %C A053002 On May 30, 1799, Gauss discovered that this number is also equal to (2/Pi)*Integral_{t=0..1}(1/sqrt(1-t^4)). %C A053002 M(a,b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0=a, b_0=b, a_{n+1}=(a_n+b_n)/2, b_{n+1}=sqrt(a_n*b_n). %D A053002 J. M. Borwein and P. B. Borwein, Pi and the AGM, page 5. %D A053002 J. R. Goldman, The Queen of Mathematics, 1998, p. 92. %H A053002 Harry J. Smith, <a href="/A053002/b053002.txt">Table of n, a(n) for n = 0..19999</a> %H A053002 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GausssConstant.html">Gauss's Constant</a> %H A053002 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a> %H A053002 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %H A053002 OEIS Wiki, <a href="/wiki/Gauss's_constant">Gauss's constant</a> %e A053002 0.83462684167407318628142973... %t A053002 ContinuedFraction[1/ArithmeticGeometricMean[1, Sqrt[2]] , 100] (* _Jean-François Alcover_, Apr 18 2011 *) %o A053002 (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(1/agm(1, sqrt(2))); for (n=1, 20000, write("b053002.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, Apr 20 2009 %Y A053002 Cf. A014549 (decimal expansion). %K A053002 nonn,cofr,nice,easy %O A053002 0,3 %A A053002 _N. J. A. Sloane_, Feb 21 2000 %E A053002 More terms from _James Sellers_, Feb 22 2000 %E A053002 Offset changed by _Andrew Howroyd_, Aug 03 2024