cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053005 Denominator of beta(2n+1)/Pi^(2n+1), where beta(m) = Sum_{k=0..inf} (-1)^k/(2k+1)^m.

Original entry on oeis.org

4, 32, 1536, 184320, 8257536, 14863564800, 1569592442880, 5713316492083200, 1096956766479974400, 6713375410857443328000, 408173224980132554342400, 18857602994082124010618880000, 640578267860512766391484416000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 21 2000

Keywords

Examples

			beta(5) = 5*Pi^5/1536 so a(2)=1536.
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 384, Problem 15.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Problem 37, beta(n).

Crossrefs

Cf. A046976.

Programs

  • Mathematica
    beta[1] = Pi/4; beta[m_] := (Zeta[m, 1/4] - Zeta[m, 3/4])/4^m; a[n_, p_] := a[n, p] = beta[2*n+1]/Pi^(2*n+1) // N[#, p]& // Rationalize[#, 0]& // Denominator; a[n_] := Module[{p = 16}, a[n, p]; p = 2*p; While[a[n, p] != a[n, p/2], p = 2*p]; a[n, p]]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Aug 19 2013 *)