This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053006 #31 Feb 08 2023 09:35:14 %S A053006 1,4,12,16,24,25,36,37,40,45,52,64,76,81,84,96,100,109,112,117,120, %T A053006 132,136,156,165,169,172,180,184,192,216,220,232,240,244,249,252,256, %U A053006 265,277,300,301,304,312,316,324,357,360,361,364,372,376,412,420,432 %N A053006 Numbers m for which there exist d(1),...,d(m), each in {0,1}, such that Sum_{i=1..m-k} d(i)*d(i+k) is odd for all k=0,...,m-1. %C A053006 m is in the sequence if and only if the multiplicative order of 2 (mod 2m-1) is odd. %D A053006 R. K. Guy, Unsolved Problems in Number Theory, E38. %H A053006 Amiram Eldar, <a href="/A053006/b053006.txt">Table of n, a(n) for n = 1..10000</a> %H A053006 P. Alles, <a href="http://dx.doi.org/10.1016/0097-3165(92)90013-K">On a Conjecture of J. Pelikan</a>, J. Comb. Th. A 60 (1992) 312-313. %H A053006 N. F. J. Inglis and J. D. A. Wiseman, <a href="http://dx.doi.org/10.1016/0097-3165(95)90017-9">Very odd sequences</a>, J. Comb. Th. A 71 (1995) 89-96. %H A053006 F. J. MacWilliams and A. M. Odlyzko, <a href="http://dx.doi.org/10.1016/0097-3165(77)90070-X">Pelikan's conjecture and cyclotomic cosets</a>, J. Comb. Th. A 22 (1977) 110-114. %F A053006 a(n) = (A036259(n) + 1)/2. %t A053006 o2[ m_ ] := Module[ {e, t}, For[ e = 1; t = 2, Mod[ t-1, m ] >0, e++, t = Mod[ 2t, m ] ]; e ]; Select[ Range[ 1, 500 ], OddQ[ o2[ 2#-1 ] ] & ] %t A053006 (* Second program: *) %t A053006 (Select[Range[1, 999, 2], OddQ[MultiplicativeOrder[2, #]]&] + 1)/2 (* _Jean-François Alcover_, Dec 20 2017 *) %o A053006 (PARI) is(n)=znorder(Mod(2,2*n-1))%2 \\ _Charles R Greathouse IV_, Jun 24 2015 %o A053006 (PARI) A000265(n)=n>>valuation(n,2) %o A053006 is(n)=Mod(2,2*n-1)^A000265(eulerphi(2*n-1))==1 \\ _Charles R Greathouse IV_, Jun 24 2015 %o A053006 (Python) %o A053006 from sympy import n_order %o A053006 def A053006_gen(startvalue=1): # generator of terms >= startvalue %o A053006 return filter(lambda n:n_order(2,(n<<1)-1)&1,count(max(startvalue,1))) %o A053006 A053006_list = list(islice(A053006_gen(),20)) # _Chai Wah Wu_, Feb 07 2023 %Y A053006 Cf. A000265, A036259. %K A053006 nonn,easy %O A053006 1,2 %A A053006 _N. J. A. Sloane_ %E A053006 More terms from _John W. Layman_, Feb 21 2000 %E A053006 Additional information from _Dean Hickerson_, May 25 2001