This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053030 #31 Aug 08 2024 11:07:02 %S A053030 3,6,7,8,9,12,14,15,16,18,20,21,23,24,27,28,30,32,33,35,36,39,40,41, %T A053030 42,43,45,46,47,48,49,51,52,54,55,56,57,60,63,64,66,67,68,69,70,72,75, %U A053030 77,78,80,81,82,83,84,86,87,88,90,91,92,93,94,95,96,98,99,100,102,103,104 %N A053030 Numbers with 2 zeros in Fibonacci numbers mod m. %C A053030 m is on this list iff m does not have 1 or 4 zeros in the Fibonacci sequence modulo m. %C A053030 A001176(a(n)) = A128924(a(n),1) = 2. - _Reinhard Zumkeller_, Jan 17 2014 %H A053030 Reinhard Zumkeller, <a href="/A053030/b053030.txt">Table of n, a(n) for n = 1..10000</a> %H A053030 Brennan Benfield and Oliver Lippard, <a href="https://arxiv.org/abs/2407.20048">Connecting Zeros in Pisano Periods to Prime Factors of K-Fibonacci Numbers</a>, arXiv:2407.20048 [math.NT], 2024. See p. 2. %H A053030 Brennan Benfield and Michelle Manes, <a href="https://arxiv.org/abs/2202.08986">The Fibonacci Sequence is Normal Base 10</a>, arXiv:2202.08986 [math.NT], 2022. %H A053030 M. Renault, <a href="http://webspace.ship.edu/msrenault/fibonacci/fib.htm">Fibonacci sequence modulo m</a> %o A053030 (Haskell) %o A053030 a053030 n = a053030_list !! (n-1) %o A053030 a053030_list = filter ((== 2) . a001176) [1..] %o A053030 -- _Reinhard Zumkeller_, Jan 17 2014 %Y A053030 Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k. %Y A053030 | m=1 | m=2 | m=3 %Y A053030 -----------------------------+----------+---------+--------- %Y A053030 The sequence {x(n)} | A000045 | A000129 | A006190 %Y A053030 The sequence {w(k)} | A001176 | A214027 | A322906 %Y A053030 Primes p such that w(p) = 1 | A112860* | A309580 | A309586 %Y A053030 Primes p such that w(p) = 2 | A053027 | A309581 | A309587 %Y A053030 Primes p such that w(p) = 4 | A053028 | A261580 | A309588 %Y A053030 Numbers k such that w(k) = 1 | A053031 | A309583 | A309591 %Y A053030 Numbers k such that w(k) = 2 | this seq | A309584 | A309592 %Y A053030 Numbers k such that w(k) = 4 | A053029 | A309585 | A309593 %Y A053030 * and also A053032 U {2} %K A053030 nonn %O A053030 1,1 %A A053030 _Henry Bottomley_, Feb 23 2000