This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053031 #36 Jul 30 2024 05:35:32 %S A053031 1,2,4,11,19,22,29,31,38,44,58,59,62,71,76,79,101,116,118,121,124,131, %T A053031 139,142,151,158,179,181,191,199,202,209,211,229,236,239,242,251,262, %U A053031 271,278,284,302,311,316,319,331,341,349,358,359,361,362,379,382,398 %N A053031 Numbers with 1 zero in Fibonacci numbers mod m. %C A053031 Conjecture: m is on this list iff m is an odd number all of whose factors are on this list or m is 2 or 4 times such an odd number. %C A053031 A001176(a(n)) = A128924(a(n),1) = 1. - _Reinhard Zumkeller_, Jan 16 2014 %C A053031 Also numbers n such that A001175(n) = A001177(n). - _Daniel Suteu_, Aug 08 2018 %H A053031 Reinhard Zumkeller, <a href="/A053031/b053031.txt">Table of n, a(n) for n = 1..1000</a> %H A053031 Brennan Benfield and Michelle Manes, <a href="https://arxiv.org/abs/2202.08986">The Fibonacci Sequence is Normal Base 10</a>, arXiv:2202.08986 [math.NT], 2022. %H A053031 Brennan Benfield and Oliver Lippard, <a href="https://arxiv.org/abs/2407.20048">Connecting Zeros in Pisano Periods to Prime Factors of K-Fibonacci Numbers</a>, arXiv:2407.20048 [math.NT], 2024. %H A053031 M. Renault, <a href="http://webspace.ship.edu/msrenault/fibonacci/fib.htm">Fibonacci sequence modulo m</a> %t A053031 With[{s = {1}~Join~Table[Count[Drop[NestWhile[Append[#, Mod[Total@ Take[#, -2], n]] &, {1, 1}, If[Length@ # < 3, True, Take[#, -2] != {1, 1}] &], -2], 0], {n, 2, 400}]}, Position[s, 1][[All, 1]] ] (* _Michael De Vlieger_, Aug 08 2018 *) %o A053031 (Haskell) %o A053031 a053031 n = a053031_list !! (n-1) %o A053031 a053031_list = filter ((== 1) . a001176) [1..] %o A053031 -- _Reinhard Zumkeller_, Jan 16 2014 %o A053031 (PARI) entryp(p)=my(k=p+[0, -1, 1, 1, -1][p%5+1], f=factor(k)); for(i=1, #f[, 1],for(j=1, f[i, 2], if((Mod([1, 1; 1, 0], p)^(k/f[i, 1]))[1, 2], break); k/=f[i, 1])); k %o A053031 entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e14, entryp(f[i, 1]^f[i, 2]), entryp(f[i, 1])*f[i, 1]^(f[i, 2]-1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<<max(f[1, 2]-2, 1)); lcm(v) %o A053031 fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2] %o A053031 is(n)=fibmod(entry(n)+1,n)==1 \\ _Charles R Greathouse IV_, Dec 14 2016 %Y A053031 Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k. %Y A053031 | m=1 | m=2 | m=3 %Y A053031 -----------------------------+----------+---------+--------- %Y A053031 The sequence {x(n)} | A000045 | A000129 | A006190 %Y A053031 The sequence {w(k)} | A001176 | A214027 | A322906 %Y A053031 Primes p such that w(p) = 1 | A112860* | A309580 | A309586 %Y A053031 Primes p such that w(p) = 2 | A053027 | A309581 | A309587 %Y A053031 Primes p such that w(p) = 4 | A053028 | A261580 | A309588 %Y A053031 Numbers k such that w(k) = 1 | this seq | A309583 | A309591 %Y A053031 Numbers k such that w(k) = 2 | A053030 | A309584 | A309592 %Y A053031 Numbers k such that w(k) = 4 | A053029 | A309585 | A309593 %Y A053031 * and also A053032 U {2} %K A053031 nonn %O A053031 1,2 %A A053031 _Henry Bottomley_, Feb 23 2000