A053036 Number of values which are not powers of 2 in the trajectory when A051953 (cototient function) is repeatedly applied starting with n!.
1, 1, 2, 2, 4, 5, 7, 7, 9, 20, 22, 23, 35, 38, 35, 35, 48, 54, 62, 79, 79, 85, 64, 65, 108, 124, 133, 130, 120, 158, 128, 128, 170, 181, 179, 189, 220, 181, 226, 228, 192, 255, 268, 268, 269, 292, 291, 286, 317, 324, 337, 288, 354, 352, 384, 378, 396, 345, 426, 393
Offset: 1
Keywords
Examples
n=9, initial value=9!=362880, the successive iterates when the cototient function (A051953) is repeatedly applied are: {362880, 279936, 186624, 124416, 82944, 55296, 36864, 24576, 16384, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0}. This includes 8 initial and 1 terminal (it is the 0) which are not powers of 2. So a(9)=8+1=9. Beside 15 2-powers appear.
Programs
-
PARI
cototient(x)= x - eulerphi(x) FunctionIterate(f,x,t)= {local(retval); retval = vector(0); while(x!=t, x = eval(concat(f,"(x)")); retval = concat(retval,x)); retval;} A053036(x) = {local(li,fa,count); count = 0; li = concat([x! ],FunctionIterate("cototient", x!, 0)); for(i=1,#li, fa = factor(li[i]); if(((matsize(fa)[1] == 1) && (fa[1,1] == 2)) || (matsize(fa)[1] == 0),0,count++)); count} for(i=1,64,print1(A053036(i),", ")) \\ Olaf Voß, Feb 20 2008
Extensions
More terms from Olaf Voß, Feb 20 2008
Comments