cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053044 a(n) is the number of iterations of the Euler totient function to reach 1, starting at n!.

This page as a plain text file.
%I A053044 #32 Aug 13 2024 04:04:36
%S A053044 0,1,2,4,6,8,10,13,15,18,21,24,27,30,33,37,41,44,47,51,54,58,62,66,70,
%T A053044 74,77,81,85,89,93,98,102,107,111,115,119,123,127,132,137,141,145,150,
%U A053044 154,159,164,169,173,178,183,188,193,197,202,207,211,216,221,226,231
%N A053044 a(n) is the number of iterations of the Euler totient function to reach 1, starting at n!.
%C A053044 Powers of 2 arise at the end of iteration chains without interruption. Analogous to A053025 and A053034. The order of speed of convergence is as follows: A000005 > A000010 > A051953: e.g., for 20! the lengths of the corresponding iteration chains are 6, 51, and 101, respectively.
%C A053044 Partial sums of A064415.
%H A053044 Amiram Eldar, <a href="/A053044/b053044.txt">Table of n, a(n) for n = 1..10000</a>
%H A053044 Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, <a href="http://math.dartmouth.edu/~carlp/iterate.pdf">On the normal behavior of the iterates of some arithmetic functions</a>, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
%H A053044 Paul Erdos, Andrew Granville, Carl Pomerance and Claudia Spiro, <a href="/A000010/a000010_1.pdf">On the normal behavior of the iterates of some arithmetic functions</a>, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
%F A053044 a(n) = A003434(A000142(n)). - _Michel Marcus_, Jan 01 2017
%e A053044 For n=1, no iteration is needed, so a(1)=0;
%e A053044 for n=2, the initial value is 2! = 2, so phi() must be applied once, thus a(2)=1;
%e A053044 for n=8, the iteration chain is {40320, 9216, 3072, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1}; its length = 14 = a(8) + 1, so the number of iterations applied to reach 1 is a(8)=13.
%t A053044 Table[Length@ NestWhileList[EulerPhi, n!, # > 1 &] - 1, {n, 61}] (* or *)
%t A053044 Table[Length@ FixedPointList[EulerPhi, n!] - 2, {n, 61}] (* _Michael De Vlieger_, Jan 01 2017 *)
%o A053044 (PARI) a(n) = {my(nb = 0, ns = n!); while (ns != 1, ns = eulerphi(ns); nb++); nb;} \\ _Michel Marcus_, Jan 01 2017
%Y A053044 Cf. A000010, A000142, A003434, A053025, A053034.
%Y A053044 Cf. also A064415.
%K A053044 nonn
%O A053044 1,3
%A A053044 _Labos Elemer_, Feb 25 2000