This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053095 #22 Apr 07 2025 17:11:21 %S A053095 1,1,1,8,62,568,5370,114546,2898058,0,1119268465,26053674813 %N A053095 Number of primes having exactly the same digits as appear in first n primes. %C A053095 a(n) = 0 if sum of digits is a multiple of three (see A103208). - _Ray Chandler_, Apr 07 2010 %e A053095 a(4) = 8 because the first four prime n, concatenated, are 2+3+5+7 or 2357. There are 8 prime arrangements: 2357, 2753, 3257, 3527, 5237, 5273, 7253, 7523. %o A053095 (Python) %o A053095 from sympy import isprime, prime %o A053095 from sympy.utilities.iterables import multiset_permutations %o A053095 def A053095(n): %o A053095 return sum(1 for d in multiset_permutations(''.join(str(prime(m+1)) for m in range(n))) if isprime(int(''.join(d)))) # _Chai Wah Wu_, Mar 17 2019 %Y A053095 Cf. A054260, A053160, A053161, A103208. %K A053095 base,nonn,more %O A053095 1,4 %A A053095 _Enoch Haga_, Mar 19 2000 %E A053095 a(7)-a(9) from _Ray Chandler_, Apr 07 2010 %E A053095 a(10) from _Ray Chandler_, Apr 08 2010 %E A053095 a(11) from _Michael S. Branicky_, Mar 17 2025 %E A053095 a(12) from _Michael S. Branicky_, Apr 07 2025