A053096 When the Euler phi function is iterated with initial value A002110(n) = primorial, a(n) = number of iterations required to reach the fixed number = 1.
1, 2, 4, 6, 9, 12, 16, 19, 23, 27, 31, 35, 40, 44, 49, 54, 59, 64, 69, 74, 79, 84, 90, 96, 102, 108, 114, 120, 125, 131, 136, 142, 149, 155, 161, 167, 173, 178, 185, 191, 198, 204, 210, 217, 223, 229, 235, 241, 248, 254, 261, 268, 275, 282, 290, 297, 304, 310
Offset: 1
Keywords
Examples
n=7, A002110(7)=510510; the corresponding iteration chain is {510510, 92160, 24576, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1}. Its length is 17, so the required number of iterations is a(7)=16.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Array[-2 + Length@ FixedPointList[EulerPhi, Product[Prime@ i, {i, #}]] &, 58] (* Michael De Vlieger, Nov 20 2017 *)
-
PARI
a(n)=my(t=prod(i=1,n,prime(i)-1),s=1); while(t>1, t=eulerphi(t); s++); s \\ Charles R Greathouse IV, Jan 06 2016
-
PARI
A003434(n)=my(s);while(n>1,n=eulerphi(n);s++);s first(n)=my(s=1); vector(n,k,s+=A003434(prime(k))-1) \\ Charles R Greathouse IV, Jan 06 2016
Formula
a(n) is the smallest number such that Nest[EulerPhi, A002110, a(n)]=1
Comments