cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053096 When the Euler phi function is iterated with initial value A002110(n) = primorial, a(n) = number of iterations required to reach the fixed number = 1.

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 16, 19, 23, 27, 31, 35, 40, 44, 49, 54, 59, 64, 69, 74, 79, 84, 90, 96, 102, 108, 114, 120, 125, 131, 136, 142, 149, 155, 161, 167, 173, 178, 185, 191, 198, 204, 210, 217, 223, 229, 235, 241, 248, 254, 261, 268, 275, 282, 290, 297, 304, 310
Offset: 1

Views

Author

Labos Elemer, Feb 28 2000

Keywords

Comments

Analogous to A053025, A053034, A053044. For comparison: iteration of, e.g., A000005 to primorial i.v. is trivially computable: q(n)=A002110(n), d(q(n)) = 2^n, d(d(q(n))) = n+1 and so A036450(A002110(n)) = A000005(n+1).

Examples

			n=7, A002110(7)=510510; the corresponding iteration chain is {510510, 92160, 24576, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1}. Its length is 17, so the required number of iterations is a(7)=16.
		

Crossrefs

Programs

  • Mathematica
    Array[-2 + Length@ FixedPointList[EulerPhi, Product[Prime@ i, {i, #}]] &, 58] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    a(n)=my(t=prod(i=1,n,prime(i)-1),s=1); while(t>1, t=eulerphi(t); s++); s \\ Charles R Greathouse IV, Jan 06 2016
    
  • PARI
    A003434(n)=my(s);while(n>1,n=eulerphi(n);s++);s
    first(n)=my(s=1); vector(n,k,s+=A003434(prime(k))-1) \\ Charles R Greathouse IV, Jan 06 2016

Formula

a(n) is the smallest number such that Nest[EulerPhi, A002110, a(n)]=1