This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053102 #16 Sep 08 2022 08:45:00 %S A053102 1,15,315,8505,280665,10945935,492567075,25120920825,1431892487025, %T A053102 90209226682575,6224436641097675,466832748082325625, %U A053102 37813452594668375625,3289770375736148679375,305948644943461827181875 %N A053102 a(n) = ((6*n+9)(!^6))/9(!^6), related to A034723 (((6*n+3)(!^6))/3 sextic, or 6-factorials). %C A053102 Row m=9 of the array A(7; m,n) := ((6*n+m)(!^6))/m(!^6), m >= 0, n >= 0. %H A053102 G. C. Greubel, <a href="/A053102/b053102.txt">Table of n, a(n) for n = 0..344</a> %F A053102 a(n) = ((6*n+9)(!^6))/9(!^6) = A034723(n+2)/9. %F A053102 E.g.f.: 1/(1-6*x)^(15/6). %t A053102 s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 14, 5!, 6}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 08 2008 *) %t A053102 With[{nn = 30}, CoefficientList[Series[1/(1 - 6*x)^(15/6), {x, 0, nn}], x]*Range[0, nn]!] (* _G. C. Greubel_, Aug 15 2018 *) %o A053102 (PARI) x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(15/6))) \\ _G. C. Greubel_, Aug 15 2018 %o A053102 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(15/6))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Aug 15 2018 %Y A053102 Cf. A047058, A008542(n+1), A034689(n+1), A034723(n+1), A034724(n+1), A034787(n+1), A034788(n+1), A053100, A053101, this sequence, A053103 (rows m=0..10). %K A053102 easy,nonn %O A053102 0,2 %A A053102 _Wolfdieter Lang_