This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053103 #16 Sep 08 2022 08:45:00 %S A053103 1,16,352,9856,335104,13404160,616591360,32062750720,1859639541760, %T A053103 119016930672640,8331185147084800,633170071178444800, %U A053103 51919945836632473600,4568955233623657676800,429481791960623821619200 %N A053103 a(n) = ((6*n+10)(!^6))/10(!^6), related to A034724 (((6*n+4)(!^6))/4 sextic, or 6-factorials). %C A053103 Row m=10 of the array A(7; m,n) := ((6*n+m)(!^6))/m(!^6), m >= 0, n >= 0. %H A053103 G. C. Greubel, <a href="/A053103/b053103.txt">Table of n, a(n) for n = 0..343</a> %F A053103 a(n) = ((6*n+10)(!^6))/10(!^6) = A034724(n+2)/10. %F A053103 E.g.f.: 1/(1-6*x)^(8/3). %t A053103 s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 15, 5!, 6}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 08 2008 *) %t A053103 With[{nn = 30}, CoefficientList[Series[1/(1 - 6*x)^(16/6), {x, 0, nn}], x]*Range[0, nn]!] (* _G. C. Greubel_, Aug 16 2018 *) %o A053103 (PARI) x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(8/3))) \\ _G. C. Greubel_, Aug 16 2018 %o A053103 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(8/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Aug 16 2018 %Y A053103 Cf. A047058, A008542(n+1), A034689(n+1), A034723(n+1), A034724(n+1), A034787(n+1), A034788(n+1), A053100, A053101, A053102, this sequence (rows m=0..10). %K A053103 easy,nonn %O A053103 0,2 %A A053103 _Wolfdieter Lang_