cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053117 Triangle read by rows of coefficients of Chebyshev's U(n,x) polynomials (exponents in increasing order).

This page as a plain text file.
%I A053117 #91 Dec 30 2024 11:27:03
%S A053117 1,0,2,-1,0,4,0,-4,0,8,1,0,-12,0,16,0,6,0,-32,0,32,-1,0,24,0,-80,0,64,
%T A053117 0,-8,0,80,0,-192,0,128,1,0,-40,0,240,0,-448,0,256,0,10,0,-160,0,672,
%U A053117 0,-1024,0,512,-1,0,60,0,-560,0,1792,0,-2304,0,1024,0,-12,0,280,0,-1792,0,4608,0,-5120,0,2048,1,0,-84,0,1120,0,-5376,0,11520,0,-11264,0,4096
%N A053117 Triangle read by rows of coefficients of Chebyshev's U(n,x) polynomials (exponents in increasing order).
%C A053117 G.f. for row polynomials U(n,x) (signed triangle): 1/(1-2*x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,2*x) as row polynomials with g.f. 1/(1-2*x*z-z^2).
%C A053117 Row sums (unsigned triangle) A000129(n+1) (Pell). Row sums (signed triangle) A000027(n+1) (natural numbers).
%C A053117 The o.g.f. for the Legendre polynomials L(n,x) is 1 / sqrt(1- 2x*z + z^2), and squaring it gives the o.g.f. of this entry, so Sum_{k=0..n} L(k,x) L(n-k,x) = U(n,x). This reduces to U(n,x) = L(n/2,x)^2 + 2*Sum_{k=0...n/2-1} L(k,x) L(n-k,x) for n even and U(n,x) = 2*Sum_{k=0..(n-1)/2} L(k,x) L(n-k.x) for odd n. (Cf. also Allouche et al.) For a connection through the Legendre polynomials to elliptic curves and modular forms, see the MathOverflow question below. For the normalized Legendre polynomials, see A100258. (Cf. A097610 with h1 = -2x and h2 = 1, A207538, A099089 and A133156.) - _Tom Copeland_, Feb 04 2016
%C A053117 The compositional inverse of the shifted o.g.f. x / (1 + 2xz + z^2) for differently signed row polynomials of this entry is the shifted o.g.f. of A121448. The unsigned, non-vanishing antidiagonals (top to bottom) of this triangle are the rows of A038207. - _Tom Copeland_, Feb 08 2016
%D A053117 Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
%D A053117 Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 22, page 196.
%H A053117 T. D. Noe, <a href="/A053117/b053117.txt">Rows n=0..100 of triangle, flattened</a>
%H A053117 J.-P. Allouche and G. Skordev, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00195-8">Schur congruences, Carlitz sequences of polynomials and automaticity</a>, Discrete Mathematics, Vol. 214, Issue 1-3, 21 March 2000, pp. 21-49.
%H A053117 Paul Barry and A. Hennessy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barry5/barry96s.html">Meixner-Type Results for Riordan Arrays and Associated Integer Sequences</a>, J. Int. Seq. 13 (2010) # 10.9.4, section 5.
%H A053117 P. Damianou, <a href="http://arxiv.org/abs/1110.6620">On the characteristic polynomials of Cartan matrices and Chebyshev polynomials</a>, arXiv preprint arXiv:1110.6620 [math.RT], 2014 (p. 10). - From _Tom Copeland_, Oct 11 2014
%H A053117 Aoife Hennessy, <a href="http://repository.wit.ie/1693/1/AoifeThesis.pdf">A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths</a>, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
%H A053117 MathOverflow, <a href="http://mathoverflow.net/questions/82597/geometric-picture-of-invariant-differential-of-an-elliptic-curve">Geometric picture of invariant differential of an elliptic curve</a>, Dec 4 2011.
%H A053117 Valentin Ovsienko, <a href="https://arxiv.org/abs/2103.10800">Towards quantized complex numbers: q-deformed Gaussian integers and the Picard group</a>, arXiv:2103.10800 [math.QA], 2021.
%H A053117 R. Pemantle and M. C. Wilson, <a href="http://arXiv.org/abs/math.CO/0003192">Asymptotics of multivariate sequences, I: smooth points of the singular variety</a>, arXiv:math/0003192 [math.CO], 2000.
%H A053117 A. Sapounakis, I. Tasoulas, and P. Tsikouras, <a href="http://dx.doi.org/10.1016/j.disc.2007.03.005">Counting strings in Dyck paths</a>, Discrete Math., 307 (2007), 2909-2924.
%H A053117 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials</a>.
%F A053117 a(n, m) = (2^m)*A049310(n,m).
%F A053117 a(n, m) := 0 if n<m or n+m odd, else ((-1)^((n+m)/2+m))*(2^m)*binomial((n+m)/2, m); a(n, m) = -a(n-2, m)+2*a(n-1, m-1), a(n, -1) := 0 =: a(-1, m), a(0, 0)=1, a(n, m)= 0 if n<m or n+m odd; G.f. for m-th column (signed triangle): (1/(1+x^2)^(m+1))*(2*x)^m.
%F A053117 If n and k are of the same parity then a(n,k)=(-1)^((n-k)/2)*sum(binomial((n+k)/2,i)*binomial((n+k)/2-i,(n-k)/2),i=0..k) and a(n,k)=0 otherwise. - _Milan Janjic_, Apr 13 2008
%e A053117 Triangle begins:
%e A053117    1;
%e A053117    0,  2;
%e A053117   -1,  0,   4;
%e A053117    0, -4,   0, 8;
%e A053117    1,  0, -12, 0, 16;
%e A053117   ...
%e A053117 E.g., fourth row (n=3) {0,-4,0,8} corresponds to polynomial U(3,x) = -4*x + 8*x^3.
%p A053117 seq(seq(coeff(orthopoly[U](n,x),x,j),j=0..n),n=0..16); # _Robert Israel_, Feb 09 2016
%t A053117 Flatten[ Table[ CoefficientList[ ChebyshevU[n, x], x], {n, 0, 12}]](* _Jean-François Alcover_, Nov 24 2011 *)
%o A053117 (PARI) T(n, k) = polcoeff(polchebyshev(n,2), k); \\ _Michel Marcus_, Feb 10 2016
%o A053117 (Julia)
%o A053117 using Nemo
%o A053117 function A053117Row(n)
%o A053117     R, x = PolynomialRing(ZZ, "x")
%o A053117     p = chebyshev_u(n, x)
%o A053117     [coeff(p, j) for j in 0:n] end
%o A053117 for n in 0:6 A053117Row(n) |> println end # _Peter Luschny_, Mar 13 2018
%Y A053117 Cf. A000027, A000129, A049310, A053118.
%Y A053117 Cf. A038207, A097610, A099089, A100258, A121448, A133156, A207538.
%K A053117 easy,nice,sign,tabl,look
%O A053117 0,3
%A A053117 _Wolfdieter Lang_