cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053118 Triangle of coefficients of Chebyshev's U(n,x) polynomials (exponents in decreasing order).

This page as a plain text file.
%I A053118 #18 Jan 27 2015 08:34:09
%S A053118 1,2,0,4,0,-1,8,0,-4,0,16,0,-12,0,1,32,0,-32,0,6,0,64,0,-80,0,24,0,-1,
%T A053118 128,0,-192,0,80,0,-8,0,256,0,-448,0,240,0,-40,0,1,512,0,-1024,0,672,
%U A053118 0,-160,0,10,0,1024,0,-2304,0,1792,0,-560,0,60,0,-1,2048,0,-5120,0,4608,0,-1792,0,280,0,-12,0,4096,0,-11264,0,11520,0,-5376
%N A053118 Triangle of coefficients of Chebyshev's U(n,x) polynomials (exponents in decreasing order).
%C A053118 a(n,m)= A053117(n,n-m) = 2^(n-m)*A049310(n,n-m).
%C A053118 G.f. for row polynomials U(n,x) (signed triangle): 1/(1-2*x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,2*x) as row polynomials with G.f. 1/(1-2*x*z-z^2).
%C A053118 Row sums (unsigned triangle) A000129(n+1) (Pell). Row sums (signed triangle) A000027(n+1) (natural numbers).
%D A053118 Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
%H A053118 T. D. Noe, <a href="/A053118/b053118.txt">Rows n=0..100 of triangle, flattened</a>
%H A053118 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F A053118 a(n, m) := 0 if n<m or m odd, else ((-1)^(3*m/2))*(2^(n-m))*binomial(n-m/2, n-m); a(n, m) = 2*a(n-1, m) - a(n-2, m-2), a(n, -2) := 0 =: a(n, -1), a(0, 0)=1, a(n, m)= 0 if n<m or m odd; G.f. for m-th column (signed triangle): (-1)^(3*m/2)*x^m/(1-2*x)^(m/2+1) if m >= 0 is even else 0.
%e A053118 1;
%e A053118 2,0;
%e A053118 4,0,-1;
%e A053118 8,0,-4,0;
%e A053118 16,0,-12,0,1;
%e A053118 ... E.g. fourth row (n=3) {8,0,-4,0} corresponds to polynomial U(3,x)= 8*x^3-4*x.
%t A053118 Flatten[ Table[ Reverse[ CoefficientList[ ChebyshevU[n, x], x]], {n, 0, 12}]] (* _Jean-François Alcover_, Jan 20 2012 *)
%Y A053118 Cf. A053117, A049310, A000129.
%Y A053118 Triangle reflected without zeros: A008312 (the main entry).
%K A053118 easy,nice,sign,tabl
%O A053118 0,2
%A A053118 _Wolfdieter Lang_