cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053119 Triangle of coefficients of Chebyshev's S(n,x) polynomials (exponents in decreasing order).

This page as a plain text file.
%I A053119 #56 Jul 20 2024 05:29:43
%S A053119 1,1,0,1,0,-1,1,0,-2,0,1,0,-3,0,1,1,0,-4,0,3,0,1,0,-5,0,6,0,-1,1,0,-6,
%T A053119 0,10,0,-4,0,1,0,-7,0,15,0,-10,0,1,1,0,-8,0,21,0,-20,0,5,0,1,0,-9,0,
%U A053119 28,0,-35,0,15,0,-1,1,0,-10,0,36,0,-56,0,35,0,-6,0,1,0,-11,0,45,0,-84,0,70,0,-21,0,1
%N A053119 Triangle of coefficients of Chebyshev's S(n,x) polynomials (exponents in decreasing order).
%C A053119 These polynomials also give the determinant of the tridiagonal matrix having x on the diagonal and -1 next to these x. - _M. F. Hasler_, Oct 15 2019
%C A053119 The polynomial S(n,x) is the character of the irreducible (n+1) dimensional representation of the Lie algebra sl_2 when x is the character of irreducible 2-dimesional representation. - _Leonid Bedratyuk_, Oct 28 2023
%D A053119 D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 232, Sect. 3.3.38.
%D A053119 Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
%H A053119 T. D. Noe, <a href="/A053119/b053119.txt">Rows n=0..100 of triangle, flattened</a>
%H A053119 Tom Copeland, <a href="http://tcjpn.wordpress.com/2015/10/12/">Addendum to Elliptic Lie Triad</a>
%H A053119 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F A053119 a(n,m) = A049310(n,n-m).
%F A053119 G.f. for row polynomials S(n,x) (signed triangle): 1/(1-x*z+z^2).
%F A053119 Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,x) as row polynomials with G.f. 1/(1-x*z-z^2).
%F A053119 a(n, m) := 0 if n < m or m odd, else ((-1)^(3*m/2))*binomial(n-m/2, n-m); a(n, m) = a(n-1, m) - a(n-2, m-2), a(n, -2) := 0 =: a(n, -1), a(0, 0) = 1, a(n, m) = 0 if n < m or m odd.
%F A053119 G.f. for m-th column (signed triangle): (-1)^(3*m/2)*x^m/(1-x)^(m/2+1) if m >= 0 is even else 0.
%F A053119 Recurrence for the (unsigned) Fibonacci polynomials: F[1]=1, F[2]=x; for n>2, F[n] = x*F[n-1]+F[n-2].
%F A053119 a = 2*A192011 - 3*A192174. - _Thomas Baruchel_, Jun 02 2018
%F A053119 Recurrence for the polynomials S(n) = x S(n-1) - S(n-2); S(0) = 1, S(1) = x. - _M. F. Hasler_, Oct 15 2019
%e A053119 The triangle begins:
%e A053119 n\m 0  1   2  3   4  5   6  7   8  9  10 ...
%e A053119 0:  1
%e A053119 1:  1  0
%e A053119 2:  1  0  -1
%e A053119 3:  1  0  -2  0
%e A053119 4:  1  0  -3  0   1
%e A053119 5:  1  0  -4  0   3  0
%e A053119 6:  1  0  -5  0   6  0  -1
%e A053119 7:  1  0  -6  0  10  0  -4  0
%e A053119 8:  1  0  -7  0  15  0 -10  0   1
%e A053119 9:  1  0  -8  0  21  0 -20  0   5  0
%e A053119 10: 1  0  -9  0  28  0 -35  0  15  0  -1
%e A053119 ... Reformatted. - _Wolfdieter Lang_, Dec 17 2013
%e A053119 E.g., fourth row (n=3) corresponds to polynomial S(3,x)= x^3-2*x.
%e A053119 Triangle of absolute values of coefficients (coefficients of Fibonacci polynomials) with exponents in increasing order begins:
%e A053119 [1]
%e A053119 [0, 1]
%e A053119 [1, 0, 1]
%e A053119 [0, 2, 0, 1]
%e A053119 [1, 0, 3, 0, 1]
%e A053119 [0, 3, 0, 4, 0, 1]
%e A053119 [1, 0, 6, 0, 5, 0, 1]
%e A053119 [0, 4, 0, 10, 0, 6, 0, 1]
%e A053119 [1, 0, 10, 0, 15, 0, 7, 0, 1]
%e A053119 [0, 5, 0, 20, 0, 21, 0, 8, 0, 1]
%e A053119 See A162515 for the Fibonacci polynomials with reversed row entries, starting there with row 1. - _Wolfdieter Lang_, Dec 16 2013
%p A053119 A053119 := (n, k) -> if k::even then (-1)^binomial(k, 2)*binomial(n - k/2, k/2)
%p A053119 else 0 fi: seq(seq(A053119(n, k), k = 0..n), n = 0..11); # _Peter Luschny_, Jul 20 2024
%t A053119 ChebyshevS[n_, x_] := ChebyshevU[n, x/2]; Flatten[ Table[ Reverse[ CoefficientList[ ChebyshevS[n, x], x]], {n, 0, 12}]] (* _Jean-François Alcover_, Nov 25 2011 *)
%o A053119 (PARI) tabl(nn) = for (n=0, nn, print(Vec(polchebyshev(n, 2, x/2)))); \\ _Michel Marcus_, Jan 14 2016
%Y A053119 Row sums give A000045. Reflection of A049310.
%Y A053119 Cf. A162515. - _Wolfdieter Lang_, Dec 16 2013
%K A053119 easy,nice,sign,tabl
%O A053119 0,9
%A A053119 _Wolfdieter Lang_