This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053134 #46 Oct 21 2022 09:44:54 %S A053134 1,15,70,210,495,1001,1820,3060,4845,7315,10626,14950,20475,27405, %T A053134 35960,46376,58905,73815,91390,111930,135751,163185,194580,230300, %U A053134 270725,316251,367290,424270,487635,557845,635376,720720,814385,916895,1028790,1150626,1282975 %N A053134 Binomial coefficients C(2*n+4,4). %C A053134 Even-indexed members of fifth column of Pascal's triangle A007318. %C A053134 Number of standard tableaux of shape (2n+1,1^4). - _Emeric Deutsch_, May 30 2004 %C A053134 Number of integer solutions to -n <= x <= y <= z <= w <= n. - _Michael Somos_, Dec 28 2011 %H A053134 Vincenzo Librandi, <a href="/A053134/b053134.txt">Table of n, a(n) for n = 0..200</a> %H A053134 Milan Janjić, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfor.pdf">Two Enumerative Functions</a>. %H A053134 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A053134 a(n) = binomial(2*n+4, 4) = A000332(2*n+4). %F A053134 G.f.: (1 + 10*x + 5*x^2)/(1-x)^5. %F A053134 a(1 - n) = A053126(n). - _Michael Somos_, Dec 28 2011 %F A053134 E.g.f.: (6 + 84*x + 123*x^2 + 44*x^3 + 4*x^4)*exp(x)/6. - _G. C. Greubel_, Sep 03 2018 %F A053134 a(n) = (1/6)*(n + 1)*(n + 2)*(2*n + 1)*(2*n + 3). - _Gerry Martens_, Oct 13 2022 %F A053134 From _Amiram Eldar_, Oct 21 2022: (Start) %F A053134 Sum_{n>=0} 1/a(n) = 16*log(2) - 10. %F A053134 Sum_{n>=0} (-1)^n/a(n) = 10 - 2*Pi - 4*log(2). (End) %e A053134 1 + 15*x + 70*x^2 + 210*x^3 + 495*x^4 + 1001*x^5 + 1820*x^6 + 3060*x^7 + ... %t A053134 Table[Binomial[2*n+4,4], {n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5 ,1}, {1, 15, 70, 210, 495}, 30] (* _G. C. Greubel_, Sep 03 2018 *) %o A053134 (Magma) [Binomial(2*n+4,4): n in [0..30]]; // _Vincenzo Librandi_, Oct 07 2011 %o A053134 (PARI) for(n=0,30, print1(binomial(2*n+4,4), ", ")) \\ _G. C. Greubel_, Sep 03 2018 %Y A053134 Cf. A000447, A002299, A053126, A000332. %K A053134 nonn,easy %O A053134 0,2 %A A053134 _Wolfdieter Lang_