This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053135 #36 Mar 28 2024 23:55:32 %S A053135 1,28,210,924,3003,8008,18564,38760,74613,134596,230230,376740,593775, %T A053135 906192,1344904,1947792,2760681,3838380,5245786,7059052,9366819, %U A053135 12271512,15890700,20358520,25827165,32468436,40475358,50063860,61474519,74974368,90858768 %N A053135 Binomial coefficients C(2*n+6,6). %C A053135 Even-indexed members of seventh column of Pascal's triangle A007318. %C A053135 Number of standard tableaux of shape (2n+1,1^6). - _Emeric Deutsch_, May 30 2004 %H A053135 Nathaniel Johnston, <a href="/A053135/b053135.txt">Table of n, a(n) for n = 0..1000</a> %H A053135 Milan Janjić, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfun.pdf">Enumerative Formulas for Some Functions on Finite Sets</a>. %H A053135 Milan Janjić, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfor.pdf">Two Enumerative Functions</a>. %H A053135 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A053135 G.f.: (1 + 21*x + 35*x^2 + 7*x^3)/(1-x)^7. %F A053135 a(n) = binomial(2*n+6, 6) = A000579(2*n+6). %F A053135 a(n) = A000384(n+1)*A000384(n+2)*A000384(n+3)/90. - _Bruno Berselli_, Nov 12 2014 %F A053135 E.g.f.: (90 + 2430*x + 6975*x^2 + 5655*x^3 + 1710*x^4 + 204*x^5 + 8*x^6)* exp(x)/90. - _G. C. Greubel_, Sep 03 2018 %F A053135 From _Amiram Eldar_, Oct 21 2022: (Start) %F A053135 Sum_{n>=0} 1/a(n) = 96*log(2) - 131/2. %F A053135 Sum_{n>=0} (-1)^n/a(n) = 23/2 - 6*Pi + 12*log(2). (End) %p A053135 seq(binomial(2*n+6,6),n=0..40); # _Nathaniel Johnston_, May 14 2011 %t A053135 Table[Binomial[2*n+6, 6], {n, 0, 30}] (* _G. C. Greubel_, Sep 03 2018 *) %o A053135 (PARI) vector(30,n,n--; binomial(2*n+6, 6)) \\ _G. C. Greubel_, Sep 03 2018 %o A053135 (Magma) [Binomial(2*n+6, 6): n in [0..30]]; // _G. C. Greubel_, Sep 03 2018 %Y A053135 Cf. A000384, A000579, A002299, A007318, A053128, A053134, A190152. %K A053135 nonn,easy %O A053135 0,2 %A A053135 _Wolfdieter Lang_