This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053138 #38 Aug 13 2024 05:04:11 %S A053138 1,55,715,5005,24310,92378,293930,817190,2042975,4686825,10015005, %T A053138 20160075,38567100,70607460,124403620,211915132,350343565,563921995, %U A053138 886163135,1362649145,2054455634,3042312350,4431613550,6358402050,8996462475,12565671261,17341763505 %N A053138 Binomial coefficients C(2*n+9,9). %C A053138 Even-indexed members of tenth column of Pascal's triangle A007318. %C A053138 Number of standard tableaux of shape (2n+1,1^9). - _Emeric Deutsch_, May 30 2004 %H A053138 Vincenzo Librandi, <a href="/A053138/b053138.txt">Table of n, a(n) for n = 0..200</a> %H A053138 Milan Janjić, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfor.pdf">Two Enumerative Functions</a>. %H A053138 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45, 10,-1). %F A053138 a(n) = binomial(2*n+9, 9) = A000582(2*n+9). %F A053138 G.f.: (1 + 45*x + 210*x^2 + 210*x^3 + 45*x^4 + x^5) / (1-x)^10. %F A053138 G.f.: (1 + x) * (x^4 + 44*x^3 + 166*x^2 + 44*x + 1) / (1-x)^10. %F A053138 a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n > 9. - _Wesley Ivan Hurt_, Dec 05 2016 %F A053138 From _Amiram Eldar_, Nov 03 2022: (Start) %F A053138 Sum_{n>=0} 1/a(n) = 1152*log(2) - 27912/35. %F A053138 Sum_{n>=0} (-1)^n/a(n) = 36*Pi - 3924/35. (End) %p A053138 A053138:=n->binomial(2*n+9,9): seq(A053138(n), n=0..40); # _Wesley Ivan Hurt_, Dec 05 2016 %t A053138 Table[Binomial[2n+9,9],{n,0,30}] (* _Harvey P. Dale_, Dec 08 2011 *) %o A053138 (Magma) [Binomial(2*n+9,9): n in [0..30]]; // _Vincenzo Librandi_, Oct 07 2011 %o A053138 (PARI) for(n=0,30, print1(binomial(2*n+9, 9), ", ")) \\ _G. C. Greubel_, Sep 03 2018 %Y A053138 Cf. A000582, A007318, A053131, A053137. %K A053138 nonn,easy %O A053138 0,2 %A A053138 _Wolfdieter Lang_