This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053152 #39 Jul 02 2025 16:01:59 %S A053152 0,2,9,32,105,332,1029,3152,9585,29012,87549,263672,793065,2383292, %T A053152 7158069,21490592,64504545,193579172,580868589,1742867912,5229128025, %U A053152 15688432652,47067395109,141206379632,423627527505,1270899359732,3812731633629,11438262009752 %N A053152 Number of 2-element intersecting families whose union is an n-element set. %H A053152 G. C. Greubel, <a href="/A053152/b053152.txt">Table of n, a(n) for n = 1..1000</a> %H A053152 V. Jovovic and G. Kilibarda, <a href="http://dx.doi.org/10.4213/dm398">On the number of Boolean functions in the Post classes F^{mu}_8</a>, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138. %H A053152 V. Jovovic and G. Kilibarda, <a href="http://dx.doi.org/10.1515/dma.1999.9.6.593">On the number of Boolean functions in the Post classes F^{mu}_8</a>, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6. %H A053152 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6). %F A053152 a(n) = (1/2!)*(3^n-2^n-1). %F A053152 From _Colin Barker_, Jun 26 2012: (Start) %F A053152 a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3). %F A053152 G.f.: x^2*(2-3*x)/((1-x)*(1-2*x)*(1-3*x)). (End) %F A053152 a(n) = floor((3^n-2^n)/2). - _Wesley Ivan Hurt_, Mar 16 2015 %p A053152 A053152:=n->floor((3^n-2^n)/2): seq(A053152(n), n=1..30); # _Wesley Ivan Hurt_, Mar 19 2015 %t A053152 CoefficientList[Series[x (2 - 3 x) / ((1 - x) (1 - 2 x) (1 - 3 x)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Mar 17 2015 *) %t A053152 LinearRecurrence[{6,-11,6}, {0,2,9}, 50] (* _G. C. Greubel_, Oct 06 2017 *) %o A053152 (Sage) [(3^n - 1)/2-2^(n-1) for n in range(1,27)] # _Zerinvary Lajos_, Jun 05 2009 %o A053152 (Magma) [Floor((3^n-2^n)/2): n in [1..30]]; // _Vincenzo Librandi_, Mar 17 2015 %o A053152 (PARI) for(n=1,50, print1((1/2)*(3^n -2^n -1), ", ")) \\ _G. C. Greubel_, Oct 06 2017 %Y A053152 Cf. A036239, A064686 (first differences). %K A053152 easy,nonn %O A053152 1,2 %A A053152 _Vladeta Jovovic_, Goran Kilibarda, Feb 28 2000 %E A053152 More terms from _James Sellers_, Mar 01 2000 %E A053152 a(27)-a(28) from _Vincenzo Librandi_, Mar 17 2015