cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053165 4th-power-free part of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 2, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 3, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Henry Bottomley, Feb 29 2000

Keywords

Crossrefs

Equivalent sequences for other powers: A007913 (2), A050985 (3).
A003961, A059897 are used to express relationship between terms of this sequence.
Related to A065331 via A225546.

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, 4]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
  • PARI
    a(n)=my(f=factor(n)); f[,2]=f[,2]%4; factorback(f) \\ Charles R Greathouse IV, Sep 02 2015
  • Python
    from operator import mul
    from functools import reduce
    from sympy import factorint
    def A053165(n):
        return 1 if n <=1 else reduce(mul,[p**(e % 4) for p,e in factorint(n).items()])
    # Chai Wah Wu, Feb 04 2015
    

Formula

a(n) = n/A008835(n).
Dirichlet g.f.: zeta(4s)*zeta(s-1)/zeta(4s-4). The Dirichlet convolution of this sequence with A008835 is A000203. - R. J. Mathar, Apr 05 2011
From Peter Munn, Jan 15 2020: (Start)
a(2) = 2; a(4) = 4; a(n^4) = 1; a(A003961(n)) = A003961(a(n)); a(A059897(n,k)) = A059897(a(n), a(k)).
a(A225546(n)) = A225546(A065331(n)).
(End)
Multiplicative with a(p^e) = p^(e mod 4). - Amiram Eldar, Sep 07 2020
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / 210. - Vaclav Kotesovec, Aug 20 2021