A053167 Smallest 4th power divisible by n.
1, 16, 81, 16, 625, 1296, 2401, 16, 81, 10000, 14641, 1296, 28561, 38416, 50625, 16, 83521, 1296, 130321, 10000, 194481, 234256, 279841, 1296, 625, 456976, 81, 38416, 707281, 810000, 923521, 256, 1185921, 1336336, 1500625, 1296, 1874161, 2085136
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Henry Bottomley, Some Smarandache-type multiplicative sequences.
Programs
-
Mathematica
f[p_, e_] := p^(e + Mod[4 - Mod[e, 4], 4]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019*)
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(f[i,2] + (4-f[i,2])%4));} \\ Amiram Eldar, Oct 27 2022
Formula
From Amiram Eldar, Jul 29 2022: (Start)
Multiplicative with a(p^e) = p^(e + ((4-e) mod 4)).
Sum_{n>=1} 1/a(n) = Product_{p prime} ((p^4+3)/(p^4-1)) = 1.341459051107600424... . (End)
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(16)/(5*zeta(4))) * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^7 + 1/p^8) = 0.1230279197... . - Amiram Eldar, Oct 27 2022