cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053167 Smallest 4th power divisible by n.

Original entry on oeis.org

1, 16, 81, 16, 625, 1296, 2401, 16, 81, 10000, 14641, 1296, 28561, 38416, 50625, 16, 83521, 1296, 130321, 10000, 194481, 234256, 279841, 1296, 625, 456976, 81, 38416, 707281, 810000, 923521, 256, 1185921, 1336336, 1500625, 1296, 1874161, 2085136
Offset: 1

Views

Author

Henry Bottomley, Feb 29 2000

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e + Mod[4 - Mod[e, 4], 4]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019*)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(f[i,2] + (4-f[i,2])%4));} \\ Amiram Eldar, Oct 27 2022

Formula

a(n) = (n/A000190(n))^4 = (n*A007913(n))^2/A008835(n*A007913(n)).
From Amiram Eldar, Jul 29 2022: (Start)
Multiplicative with a(p^e) = p^(e + ((4-e) mod 4)).
Sum_{n>=1} 1/a(n) = Product_{p prime} ((p^4+3)/(p^4-1)) = 1.341459051107600424... . (End)
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(16)/(5*zeta(4))) * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^7 + 1/p^8) = 0.1230279197... . - Amiram Eldar, Oct 27 2022