cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A280187 Numbers n such that 2 * (1^n + 2^n + 3^n + ... + n^n) is not 0 (mod n), but 2 * (1^d + 2^d + 3^d + ... + d^d) is 0 (mod d) for each other d | n.

Original entry on oeis.org

6, 20, 110, 272, 506, 812, 2162, 2756, 3422, 4970, 6806, 7832, 11342, 12656, 17030, 18632, 22052, 27722, 29756, 31862, 36290, 38612, 51302, 54056, 56882, 62750, 65792, 68906, 72092, 85556, 96410, 100172, 120062, 124256, 128522
Offset: 1

Views

Author

Keywords

Crossrefs

Primitive elements of A228870.
Subsequence of A002943. Also a subsequence of A028689, A036689, A053198, A068377, A079143, A128672, A220211 and other sequences ...- Paolo P. Lava, Jan 10 2017

Programs

  • PARI
    has(n)=my(f=factor(n)[,1]); for(i=1,#f, if(n%(f[i]-1)==0 && f[i]>2, return(1))); 0
    is(n)=if(n%2, return(0)); if(n%3==0, return(n==6)); if(n%20==0, return(n==20)); if(!has(n), return(0)); my(f=factor(n)[,1]); for(i=1,#f, if(has(n/f[i]), return(0))); 1 \\ Charles R Greathouse IV, Dec 28 2016
Showing 1-1 of 1 results.