A280187 Numbers n such that 2 * (1^n + 2^n + 3^n + ... + n^n) is not 0 (mod n), but 2 * (1^d + 2^d + 3^d + ... + d^d) is 0 (mod d) for each other d | n.
6, 20, 110, 272, 506, 812, 2162, 2756, 3422, 4970, 6806, 7832, 11342, 12656, 17030, 18632, 22052, 27722, 29756, 31862, 36290, 38612, 51302, 54056, 56882, 62750, 65792, 68906, 72092, 85556, 96410, 100172, 120062, 124256, 128522
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..4000
Crossrefs
Programs
-
PARI
has(n)=my(f=factor(n)[,1]); for(i=1,#f, if(n%(f[i]-1)==0 && f[i]>2, return(1))); 0 is(n)=if(n%2, return(0)); if(n%3==0, return(n==6)); if(n%20==0, return(n==20)); if(!has(n), return(0)); my(f=factor(n)[,1]); for(i=1,#f, if(has(n/f[i]), return(0))); 1 \\ Charles R Greathouse IV, Dec 28 2016