This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053219 #27 Oct 27 2023 22:00:45 %S A053219 1,3,2,8,5,3,20,12,7,4,48,28,16,9,5,112,64,36,20,11,6,256,144,80,44, %T A053219 24,13,7,576,320,176,96,52,28,15,8,1280,704,384,208,112,60,32,17,9, %U A053219 2816,1536,832,448,240,128,68,36,19,10,6144,3328,1792,960,512,272,144,76,40 %N A053219 Reverse of triangle A053218, read by rows. %C A053219 First element in each row gives A001792. Difference between center element of row 2n-1 and row sum of row n (A053220(n+4) - A053221(n+4)) gives A045618(n). %C A053219 Subtriangle of triangle in A062111. - _Philippe Deléham_, Nov 21 2011 %C A053219 Can be seen as the transform of 1, 2, 3, 4, 5, ... by a variant of the boustrophedon algorithm (see the Sage implementation). - _Peter Luschny_, Oct 30 2014 %e A053219 Triangle begins: %e A053219 1 %e A053219 3, 2 %e A053219 8, 5, 3 %e A053219 20, 12, 7, 4 %e A053219 48, 28, 16, 9, 5 ... %t A053219 Map[Reverse,NestList[FoldList[Plus,#[[1]]+1,#]&,{1},10]]//Grid (* _Geoffrey Critzer_, Jun 27 2013 *) %o A053219 (Sage) %o A053219 def u(): %o A053219 for n in PositiveIntegers(): %o A053219 yield n %o A053219 def bous_variant(f): %o A053219 k = 0 %o A053219 am = next(f) %o A053219 a = [am] %o A053219 while True: %o A053219 yield list(a) %o A053219 am = next(f) %o A053219 a.append(am) %o A053219 for m in range(k,-1,-1): %o A053219 am += a[m] %o A053219 a[m] = am %o A053219 k += 1 %o A053219 b = bous_variant(u()) %o A053219 [next(b) for _ in range(8)] # _Peter Luschny_, Oct 30 2014 %Y A053219 Cf. A053218 (reverse of this triangle), A053220 (center elements), A053221 (row sums), A001792, A045618, A062111. %K A053219 nonn,tabl %O A053219 1,2 %A A053219 _Asher Auel_, Jan 01 2000