A053270 Coefficients of the '6th-order' mock theta function rho(q).
1, 2, 3, 4, 6, 8, 11, 14, 18, 24, 30, 38, 47, 58, 72, 88, 108, 130, 156, 188, 225, 268, 318, 376, 444, 522, 612, 716, 834, 972, 1129, 1308, 1512, 1744, 2010, 2310, 2652, 3038, 3474, 3968, 4524, 5152, 5857, 6650, 7542, 8540, 9660, 10912, 12312, 13878
Offset: 0
References
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 3, 13
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
- George E. Andrews and Dean Hickerson, Ramanujan's "lost" notebook VII: The sixth order mock theta functions, Advances in Mathematics, 89 (1991) 60-105.
Crossrefs
Programs
-
Mathematica
Series[Sum[q^(n(n+1)/2) Product[1+q^k, {k, 1, n}]/Product[1-q^k, {k, 1, 2n+1, 2}], {n, 0, 13}], {q, 0, 100}] nmax = 100; CoefficientList[Series[Sum[x^(k*(k+1)/2) * Product[1+x^j, {j, 1, k}]/Product[1-x^j, {j, 1, 2*k+1, 2}], {k, 0, Floor[Sqrt[2*nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)
Formula
G.f.: rho(q) = Sum_{n >= 0} ( q^(n(n+1)/2) *(1+q)*(1+q^2)...(1+q^n)/((1-q)*(1-q^3)...(1-q^(2n+1))) ).
a(n) ~ exp(Pi*sqrt(n/3)) / (2*sqrt(3*n)). - Vaclav Kotesovec, Jun 12 2019