cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053271 Coefficients of the '6th-order' mock theta function sigma(q).

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 5, 7, 8, 11, 14, 17, 22, 28, 33, 41, 51, 60, 74, 89, 105, 127, 151, 177, 210, 248, 289, 340, 398, 461, 537, 624, 719, 832, 960, 1101, 1267, 1453, 1660, 1899, 2167, 2465, 2807, 3190, 3614, 4097, 4638, 5237, 5915, 6671, 7507, 8450, 9498
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 13.

Crossrefs

Other '6th-order' mock theta functions are at A053268, A053269, A053270, A053272, A053273, A053274.

Programs

  • Mathematica
    Series[Sum[q^((n+1)(n+2)/2) Product[1+q^k, {k, 1, n}]/Product[1-q^k, {k, 1, 2n+1, 2}], {n, 0, 12}], {q, 0, 100}]
    nmax = 100; CoefficientList[Series[Sum[x^((k+1)*(k+2)/2) * Product[1+x^j, {j, 1, k}]/Product[1-x^j, {j, 1, 2*k+1, 2}], {k, 0, Floor[Sqrt[2*nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)

Formula

G.f.: sigma(q) = Sum_{n >= 0} q^((n+1)(n+2)/2) (1+q)(1+q^2)...(1+q^n)/((1-q)(1-q^3)...(1-q^(2n+1))).
a(n) ~ exp(Pi*sqrt(n/3)) / (4*sqrt(3*n)). - Vaclav Kotesovec, Jun 12 2019