A053281 Coefficients of the '10th-order' mock theta function phi(q).
1, 2, 2, 3, 4, 4, 6, 7, 8, 10, 12, 14, 16, 20, 22, 26, 31, 34, 40, 46, 52, 60, 68, 76, 87, 98, 110, 124, 140, 156, 174, 196, 216, 242, 270, 298, 332, 368, 406, 449, 496, 546, 602, 664, 728, 800, 880, 962, 1056, 1156, 1262, 1381, 1508, 1644, 1794, 1956, 2128
Offset: 0
References
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 9.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Seiichi Manyama)
- Youn-Seo Choi, Tenth order mock theta functions in Ramanujan's lost notebook, Inventiones Mathematicae, 136 (1999) p. 497-569.
- David Newman, A Recurrence inside a Generating Function: Solution to problem 10681, American Mathematical Monthly, vol. 107 (2000), p. 569.
Programs
-
Mathematica
Series[Sum[q^(n(n+1)/2)/Product[1-q^(2k+1), {k, 0, n}], {n, 0, 13}], {q, 0, 100}] nmax = 100; CoefficientList[Series[Sum[x^(k*(k+1)/2) / Product[1-x^(2*j+1), {j, 0, k}], {k, 0, Floor[Sqrt[2*nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 11 2019 *)
Formula
G.f.: phi(q) = Sum_{n >= 0} q^(n(n+1)/2)/((1-q)(1-q^3)...(1-q^(2n+1))).
a(n) ~ sqrt(phi) * exp(Pi*sqrt(n/5)) / (2*5^(1/4)*sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 12 2019
Comments