This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053282 #48 Mar 06 2020 22:38:13 %S A053282 0,1,1,2,2,2,4,4,4,6,7,8,10,11,12,16,18,20,24,26,30,36,40,44,52,58,64, %T A053282 74,82,91,104,116,128,144,159,176,198,218,240,268,294,324,360,394,432, %U A053282 478,524,572,630,688,752,826,900,980,1072,1168,1270,1386,1505,1634 %N A053282 Coefficients of the '10th-order' mock theta function psi(q). %C A053282 Number of partitions (d1,d2,...,dm) of n such that 0 < d1/1 <= d2/2 <= ... <= dm/m. - _Seiichi Manyama_, Mar 17 2018 %D A053282 Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 9 %H A053282 Vaclav Kotesovec, <a href="/A053282/b053282.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Seiichi Manyama) %H A053282 Youn-Seo Choi, <a href="http://dx.doi.org/10.1007/s002220050318">Tenth order mock theta functions in Ramanujan's lost notebook</a>, Inventiones Mathematicae, 136 (1999) p. 497-569. %H A053282 Michele Nardelli, Antonio Nardelli, <a href="https://pdfs.semanticscholar.org/e28c/47202ef1caaafd703fda86d278a8b6771111.pdf">On the Ramanujan's Mock theta functions of tenth order: new possible mathematical developments and mathematical connections with some sectors of Particle Physics and Black Hole physics II</a>, Università degli Studi di Napoli (Italy, 2019). %F A053282 G.f.: psi(q) = Sum_{n >= 0} q^((n+1)(n+2)/2)/((1-q)(1-q^3)...(1-q^(2n+1))). %F A053282 a(n) ~ exp(Pi*sqrt(n/5)) / (2*5^(1/4)*sqrt(phi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Jun 12 2019 %e A053282 From _Seiichi Manyama_, Mar 17 2018: (Start) %e A053282 n | Partition (d1,d2,...,dm) | (d1/1, d2/2, ... , dm/m) %e A053282 --+--------------------------+------------------------- %e A053282 1 | (1) | (1) %e A053282 2 | (2) | (2) %e A053282 3 | (3) | (3) %e A053282 | (1, 2) | (1, 1) %e A053282 4 | (4) | (4) %e A053282 | (1, 3) | (1, 3/2) %e A053282 5 | (5) | (5) %e A053282 | (1, 4) | (1, 2) %e A053282 6 | (6) | (6) %e A053282 | (1, 5) | (1, 5/2) %e A053282 | (2, 4) | (2, 2) %e A053282 | (1, 2, 3) | (1, 1, 1) %e A053282 7 | (7) | (7) %e A053282 | (1, 6) | (1, 3) %e A053282 | (2, 5) | (2, 5/2) %e A053282 | (1, 2, 4) | (1, 1, 4/3) %e A053282 8 | (8) | (8) %e A053282 | (1, 7) | (1, 7/2) %e A053282 | (2, 6) | (2, 3) %e A053282 | (1, 2, 5) | (1, 1, 5/3) %e A053282 9 | (9) | (9) %e A053282 | (1, 8) | (1, 4) %e A053282 | (2, 7) | (2, 7/2) %e A053282 | (3, 6) | (3, 3) %e A053282 | (1, 2, 6) | (1, 1, 2) %e A053282 | (1, 3, 5) | (1, 3/2, 5/3) (End) %t A053282 Series[Sum[q^((n+1)(n+2)/2)/Product[1-q^(2k+1), {k, 0, n}], {n, 0, 12}], {q, 0, 100}] %t A053282 nmax = 100; CoefficientList[Series[Sum[x^((k+1)*(k+2)/2) / Product[1-x^(2*j+1), {j, 0, k}], {k, 0, Floor[Sqrt[2*nmax]]}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jun 11 2019 *) %Y A053282 Other '10th-order' mock theta functions are at A053281, A053283, A053284. %K A053282 nonn,easy %O A053282 0,4 %A A053282 _Dean Hickerson_, Dec 19 1999