This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053289 #79 Oct 11 2024 12:44:08 %S A053289 3,4,1,7,9,2,5,4,13,15,17,19,21,4,3,16,25,27,20,9,18,13,33,35,19,18, %T A053289 39,41,43,28,17,47,49,51,53,55,57,59,61,39,24,65,67,69,71,35,38,75,77, %U A053289 79,81,47,36,85,87,89,23,68,71,10,12,95,97,99,101,103,40,65,107,109,100 %N A053289 First differences of consecutive perfect powers (A001597). %C A053289 _Michel Waldschmidt_ writes: Conjecture 1.3 (Pillai). Let k be a positive integer. The equation x^p - y^q = k where the unknowns x, y, p and q take integer values, all >= 2, has only finitely many solutions (x,y,p,q). This means that in the increasing sequence of perfect powers [A001597] the difference between two consecutive terms [the present sequence] tends to infinity. It is not even known whether for, say, k=2, Pillai's equation has only finitely many solutions. A related open question is whether the number 6 occurs as a difference between two perfect powers. See Sierpiński [1970], problem 238a, p. 116. - _Jonathan Vos Post_, Feb 18 2008 %C A053289 Are there are any adjacent equal terms? - _Gus Wiseman_, Oct 08 2024 %D A053289 Wacław Sierpiński, 250 problems in elementary number theory, Modern Analytic and Computational Methods in Science and Mathematics, No. 26, American Elsevier, Warsaw, 1970, pp. 21, 115-116. %D A053289 S. S. Pillai, On the equation 2^x - 3^y = 2^X - 3^Y, Bull, Calcutta Math. Soc. 37 (1945) 15-20. %H A053289 Daniel Forgues and T. D. Noe, <a href="/A053289/b053289.txt">Table of n, a(n) for n = 1..10000</a> %H A053289 Rafael Jakimczuk, <a href="http://dx.doi.org/10.12988/imf.2016.6232">Gaps between consecutive perfect powers</a>, International Mathematical Forum, Vol. 11, No. 9 (2016), pp. 429-437. %H A053289 Holly Krieger and Brady Haran, <a href="https://www.youtube.com/watch?v=Us-__MukH9I&t=0s">Catalan's Conjecture</a>, Numberphile video (2018). %H A053289 Michel Waldschmidt, <a href="https://arxiv.org/abs/math/0312440">Open Diophantine problems</a>, arXiv:math/0312440 [math.NT], 2003-2004. %F A053289 a(n) = A001597(n+1) - A001597(n). - _Jonathan Vos Post_, Feb 18 2008 %F A053289 From _Amiram Eldar_, Jun 30 2023: (Start) %F A053289 Formulas from Jakimczuk (2016): %F A053289 Lim sup_{n->oo} a(n)/(2*n) = 1. %F A053289 Lim inf_{n->oo} a(n)/(2*n)^(2/3 + eps) = 0. (End) %F A053289 Can be obtained by inserting 0 between 3 and 6 in A375702 and then adding 1 to all terms. In particular, for n > 2, a(n+1) - 1 = A375702(n). - _Gus Wiseman_, Sep 14 2024 %e A053289 Consecutive perfect powers are A001597(14) = 121, A001597(13) = 100, so a(13) = 121 - 100 = 21. %t A053289 Differences@ Select[Range@ 3200, # == 1 || GCD @@ FactorInteger[#][[All, 2]] > 1 &] (* _Michael De Vlieger_, Jun 30 2016, after _Ant King_ at A001597 *) %o A053289 (Python) %o A053289 from sympy import mobius, integer_nthroot %o A053289 def A053289(n): %o A053289 if n==1: return 3 %o A053289 def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) %o A053289 kmin, kmax = 1,2 %o A053289 while f(kmax)+1 >= kmax: %o A053289 kmax <<= 1 %o A053289 rmin, rmax = 1, kmax %o A053289 while True: %o A053289 kmid = kmax+kmin>>1 %o A053289 if f(kmid)+1 < kmid: %o A053289 kmax = kmid %o A053289 else: %o A053289 kmin = kmid %o A053289 if kmax-kmin <= 1: %o A053289 break %o A053289 while True: %o A053289 rmid = rmax+rmin>>1 %o A053289 if f(rmid) < rmid: %o A053289 rmax = rmid %o A053289 else: %o A053289 rmin = rmid %o A053289 if rmax-rmin <= 1: %o A053289 break %o A053289 return kmax-rmax # _Chai Wah Wu_, Aug 13 2024 %Y A053289 For non-perfect-powers (A007916) we have A375706. %Y A053289 The union is A023055. %Y A053289 For prime-powers (A000961 or A246655) we have A057820. %Y A053289 Sorted positions of first appearances are A376268, complement A376519. %Y A053289 For second differences we have A376559. %Y A053289 Ascending and descending points are A376560 and A376561. %Y A053289 A001597 lists perfect-powers. %Y A053289 A112344 counts integer partitions into perfect-powers, factorizations A294068. %Y A053289 A333254 gives run-lengths of differences between consecutive primes. %Y A053289 Cf. A025475, A069623, A219551. %Y A053289 Cf. A007921, A036263, A045542, A052410, A053707, A174965, A336416, A375735, A375736, A375740, A376562. %K A053289 nonn %O A053289 1,1 %A A053289 _Labos Elemer_, Mar 03 2000