cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053315 a(n) contains n digits (either '4' or '5') and is divisible by 2^n.

This page as a plain text file.
%I A053315 #8 Oct 27 2019 17:30:10
%S A053315 4,44,544,4544,44544,444544,4444544,54444544,454444544,5454444544,
%T A053315 45454444544,545454444544,5545454444544,55545454444544,
%U A053315 555545454444544,4555545454444544,44555545454444544,544555545454444544
%N A053315 a(n) contains n digits (either '4' or '5') and is divisible by 2^n.
%H A053315 Robert Israel, <a href="/A053315/b053315.txt">Table of n, a(n) for n = 1..999</a>
%F A053315 a(n) = a(n-1) + 10^(n-1)*(4 + (a(n-1)/2^(n-1) mod 2)), i.e., a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 4, if not then n-th term begins with a 5.
%p A053315 A[1]:= 4:
%p A053315 for n from 2 to 100 do
%p A053315    if A[n-1] mod 2^n = 0 then A[n]:= A[n-1]+4*10^(n-1)
%p A053315    else A[n]:= A[n-1]+5*10^(n-1)
%p A053315 fi
%p A053315 od:
%p A053315 seq(A[i],i=1..100); # _Robert Israel_, Oct 27 2019
%Y A053315 Cf. A023403, A050621, A050622, A035014.
%K A053315 base,nonn
%O A053315 1,1
%A A053315 _Henry Bottomley_, Mar 06 2000
%E A053315 Formula corrected by _Robert Israel_, Oct 27 2019