A053316 a(n) contains n digits (either '2' or '3') and is divisible by 2^n.
2, 32, 232, 3232, 23232, 223232, 2223232, 32223232, 232223232, 3232223232, 23232223232, 323232223232, 3323232223232, 23323232223232, 323323232223232, 3323323232223232, 33323323232223232, 333323323232223232
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..999
Programs
-
Maple
A[1]:= 2: for n from 2 to 100 do if A[n-1] mod 2^n = 0 then A[n]:= A[n-1]+2*10^(n-1) else A[n]:= A[n-1]+3*10^(n-1) fi od: seq(A[i],i=1..100); # Robert Israel, Oct 27 2019
Formula
a(n) = a(n-1) + 10^(n-1)*(2 + (a(n-1)/2^(n-1) mod 2)), i.e., a(n) ends with a(n-1); if a(n-1) is divisible by 2^n then a(n) begins with a 2, if not then a(n) begins with a 3.
Extensions
Formula corrected by Robert Israel, Oct 27 2019