This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053346 #22 Feb 16 2025 08:32:42 %S A053346 7,26,70,162,336,638,1137,2001,3191,5047,7820,11568,17178 %N A053346 a(n) = solution to the postage stamp problem with 7 denominations and n stamps. %C A053346 _Fred Lunnon_ [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps. %D A053346 R. K. Guy, Unsolved Problems in Number Theory, C12. %H A053346 R. Alter and J. A. Barnett, <a href="http://www.jstor.org/stable/2321610">A postage stamp problem</a>, Amer. Math. Monthly, 87 (1980), 206-210. %H A053346 M. F. Challis, <a href="http://dx.doi.org/10.1093/comjnl/36.2.117">Two new techniques for computing extremal h-bases A_k</a>Comp. J. 36(2) (1993) 117-126 %H A053346 M. F. Challis, J. P. Robinson, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Challis/challis6.html">Some extremal postage stamp bases</a>, JIS 13 (2010) #10.2.3. %H A053346 Erich Friedman, <a href="https://erich-friedman.github.io/mathmagic/0403.html">Postage stamp problem</a> %H A053346 W. F. Lunnon, <a href="https://doi.org/10.1093/comjnl/12.4.377">A postage stamp problem</a>, Comput. J. 12 (1969) 377-380. %H A053346 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PostageStampProblem.html">Postage stamp problem</a> %Y A053346 Postage stamp sequences: A001208, A001209, A001210, A001211, A001212, A001213, A001214, A001215, A001216, A005342, A005343, A005344, A014616, A053346, A053348, A075060, A084192, A084193. %K A053346 nonn,more %O A053346 1,1 %A A053346 _N. J. A. Sloane_, Jun 20 2003 %E A053346 a(9) from Challis by _R. J. Mathar_, Apr 01 2006 %E A053346 Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004 %E A053346 a(10)-a(13) from Challis and Robinson by _Robert Price_, Jul 19 2013