This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053446 #46 Sep 30 2020 12:21:03 %S A053446 1,1,2,4,6,2,4,5,3,6,4,16,18,4,5,11,20,3,6,28,30,8,16,12,18,18,4,8,42, %T A053446 10,11,23,42,20,6,52,20,6,28,29,10,30,16,12,22,16,12,35,12,18,18,30, %U A053446 78,4,8,41,16,42,10,88,6,22,23,36,48,42,20,100,34,6,52,53,27,20,12,112,44 %N A053446 Multiplicative order of 3 mod m, where gcd(m, 3) = 1. %C A053446 Essentially the same as A050975. - _R. J. Mathar_, Oct 13 2008 %C A053446 Let k, m be any positive numbers not divisible by 3. Let k <+> m denote that of the two numbers k + m, k + 2*m which is divisible by 3. Finally, for a number t divisible by 3, let t* = t/3^s where s is the 3-adic order of t. Let u = u(n) be the n-th number which is not divisible by 3. Consider the following algorithm of the calculating a(n), similar to the algorithm in A002326: Compute successively r_1 = (1 <+> u)*, r_2 = (r_1 <+> u)*, ..., r_h = (r_(h-1) <+> u)* and finish as soon as r_h = 1. Then a(n) = s(1 <+> u) + s(r_1 <+> u) + ... + s(r_(h-1) <+> u). Note that by a similar algorithm one can compute an arbitrary multiplicative order of a mod b, where gcd(a, b) = 1. - _Vladimir Shevelev_, Oct 06 2017 %H A053446 Antti Karttunen, <a href="/A053446/b053446.txt">Table of n, a(n) for n = 1..10000</a> %F A053446 a(n) = multiplicative order of 3 modulo floor((3*n-1)/2) = A001651(n), for n >= 1. - _Wolfdieter Lang_, Sep 28 2020 %e A053446 From _Vladimir Shevelev_, Oct 06 2017: (Start) %e A053446 7 is the fifth number not divisible by 3. According to the algorithm in the comment we have in the form of a "finite continued fraction" %e A053446 1 + 14 %e A053446 ------ + 7 %e A053446 3 %e A053446 ---------- + 14 %e A053446 3 %e A053446 ----------------- + 7 %e A053446 3^2 %e A053446 ---------------------- = 1 %e A053446 3^2 %e A053446 Summing the exponents of 3 in the denominators, we obtain a(5) = 1 + 1 + 2 + 2 = 6. (End) %t A053446 MultiplicativeOrder[3, #] & /@ Select[ Range@ 115, GCD[3, #] == 1 &] (* _Robert G. Wilson v_, Apr 05 2011 *) %o A053446 (PARI) lista(nn) = {for (n=1, nn, if (gcd(n,3) == 1, print1(znorder(Mod(3, n)), ", ")););} \\ _Michel Marcus_, Feb 06 2015 %o A053446 (Sage) %o A053446 [Mod(3,n).multiplicative_order() for n in (1..115) if gcd(n,3) == 1] # _Peter Luschny_, Oct 07 2017 %o A053446 (GAP) List(Filtered([1..130],n->Gcd(n,3)=1),n->OrderMod(3,n)); # _Muniru A Asiru_, Feb 26 2019 %Y A053446 Cf. A001651, A002326, A050975. %K A053446 nonn %O A053446 1,3 %A A053446 _David W. Wilson_