This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053464 #67 Jul 25 2025 09:01:20 %S A053464 0,1,10,75,500,3125,18750,109375,625000,3515625,19531250,107421875, %T A053464 585937500,3173828125,17089843750,91552734375,488281250000, %U A053464 2593994140625,13732910156250,72479248046875,381469726562500 %N A053464 a(n) = n*5^(n-1). %C A053464 Arithmetic derivative of 5^n: a(n) = A003415(5^n). - _Darrell Minor_, Jul 21 2025 %D A053464 A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. %H A053464 Vincenzo Librandi, <a href="/A053464/b053464.txt">Table of n, a(n) for n = 0..500</a> %H A053464 Frank Ellermann, <a href="/A001792/a001792.txt">Illustration of binomial transforms</a> %H A053464 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=756">Encyclopedia of Combinatorial Structures 756</a>. %H A053464 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-25). %F A053464 a(n) = Sum_{k=0..n} 5^(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2. - _Paul Barry_, Oct 15 2004 %F A053464 a(n) = 10*a(n-1) - 25*a(n-2); n>1; a(0)=0, a(1)=1. %F A053464 Fourth binomial transform of n (starting 0, 1, 10...) Convolution of powers of 5. %F A053464 G.f.: x/(1-5*x)^2; E.g.f.: x*exp(5*x). - _Paul Barry_, Jul 22 2003 %F A053464 a(n) = - 25^n * a(-n) for all n in Z. - _Michael Somos_, Jun 26 2017 %F A053464 From _Amiram Eldar_, Oct 28 2020: (Start) %F A053464 Sum_{n>=1} 1/a(n) = 5*log(5/4). %F A053464 Sum_{n>=1} (-1)^(n+1)/a(n) = 5*log(6/5). (End) %t A053464 Join[{a=0,b=1},Table[c=10*b-25*a;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 27 2011 *) %t A053464 Table[n*5^(n-1),{n,0,20}] (* or *) LinearRecurrence[{10,-25},{0,1},30] (* _Harvey P. Dale_, Jul 22 2014 *) %o A053464 (PARI) {a(n) = n*5^(n-1)}; /* _Michael Somos_, Sep 12 2005 */ %o A053464 (Sage) [lucas_number1(n,10,25) for n in range(0, 21)] # _Zerinvary Lajos_, Apr 26 2009 %o A053464 (Magma) [n*(5^(n-1)): n in [0..30]]; // _Vincenzo Librandi_, Jun 09 2011 %Y A053464 Cf. A002697, A027471, A001787. %K A053464 easy,nonn %O A053464 0,3 %A A053464 _Barry E. Williams_, Jan 13 2000 %E A053464 More terms from _James Sellers_, Feb 02 2000