This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053465 #20 Mar 17 2020 19:31:27 %S A053465 1,1,2,7,53,712,24576,2275616,589543159,420188096140,819411181635025, %T A053465 4381819315336997184,64583749250393921183423, %U A053465 2638507778912832094660037006,300397569392490080058575760090548,95776592061550107555640978862165082446 %N A053465 Number of connected 2-multigraphs on n nodes. %C A053465 A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed). %C A053465 Also the number of connected signed graphs on n unlabeled nodes. - _Andrew Howroyd_, Sep 25 2018 %H A053465 Andrew Howroyd, <a href="/A053465/b053465.txt">Table of n, a(n) for n = 0..50</a> %H A053465 Edward A. Bender and E. Rodney Canfield, <a href="https://doi.org/10.1016/0095-8956(83)90040-0">Enumeration of connected invariant graphs</a>, Journal of Combinatorial Theory, Series B 34.3 (1983): 268-278. See p. 273. %F A053465 Inverse Euler transform of A004102. - _Andrew Howroyd_, Sep 25 2018 %t A053465 A004102 = Import["https://oeis.org/A004102/b004102.txt", "Table"][[All, 2]]; %t A053465 (* EulerInvTransform is defined in A022562 *) %t A053465 Join[{1}, EulerInvTransform[A004102 // Rest]] (* _Jean-François Alcover_, Sep 12 2019, after Andrew Howroyd, updated Mar 17 2020 *) %Y A053465 Cf. A004102, A318590. %K A053465 easy,nonn %O A053465 0,3 %A A053465 _Vladeta Jovovic_, Jan 13 2000 %E A053465 a(0)=1 prepended and terms a(15) and beyond from _Andrew Howroyd_, Sep 25 2018