cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053495 Triangle formed by coefficients of numerator polynomials defined by iterating f(u,v) = 1/u - x*v applied to a list of elements {1,2,3,4,...}.

Original entry on oeis.org

1, 1, -1, -1, 2, -2, 1, -4, 6, -6, -1, 6, -18, 24, -24, 1, -9, 36, -96, 120, -120, -1, 12, -72, 240, -600, 720, -720, 1, -16, 120, -600, 1800, -4320, 5040, -5040, -1, 20, -200, 1200, -5400, 15120, -35280, 40320, -40320, 1, -25, 300, -2400, 12600
Offset: 0

Views

Author

Wouter Meeussen, Jan 27 2001

Keywords

Examples

			1, 1 - x, -1 + 2*x - 2*x^2, 1 - 4*x + 6*x^2 - 6*x^3, ...
		

Crossrefs

Diagonals give A000142, A001563, A001286, A001809, A001754, A001810, A001755, A001811, A001777. Except for first term, row sums give negative of A058307.
Row sums of positive entries give A001053, those of negative entries give -1*A001040.

Programs

  • Mathematica
    CoefficientList[ #, x ]&/@Numerator[ FoldList[ (1/#1-x#2)&, 1, Range[ 12 ] ]//Together ]
    FoldList[(1/#1-x#2)&, 1, Range[4] ]//Together (a simpler version, which shows the rational functions)

Formula

Table[ (-1)^(r+c+1) binomial[Floor[(r+c)/2], Floor[(r-c)/2]] Floor[(r+c+1)/2]! / Floor[(r-c+1)/2]!, {r, 0, 7}, {c, 0, r}]
a[0] := -1; a[1] := 1-x; a[n_] := a[n]= n x a[n-1] + a[n-2] (matches sequence except for a[0]).