This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053516 #13 Jul 08 2018 11:09:56 %S A053516 5,325,327125,6360324375,2483590604688125,20211024423069510171875, %T A053516 3524517841661451239027963515625, %U A053516 13444967478414031326768049544880110156250,1139744010069698074379093986222808985702884783203125 %N A053516 Number of directed 4-multigraphs with loops on n nodes. %H A053516 Andrew Howroyd, <a href="/A053516/b053516.txt">Table of n, a(n) for n = 1..30</a> %t A053516 permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; %t A053516 edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v]; %t A053516 a[n_] := (s=0; Do[s += permcount[p]*5^edges[p], {p, IntegerPartitions[n]}]; s/n!); %t A053516 Array[a, 15] (* _Jean-François Alcover_, Jul 08 2018, after _Andrew Howroyd_ *) %o A053516 (PARI) %o A053516 permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m} %o A053516 edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i])} %o A053516 a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*5^edges(p)); s/n!} \\ _Andrew Howroyd_, Oct 22 2017 %Y A053516 Cf. A000595, A004105, A001374. %K A053516 easy,nonn %O A053516 1,1 %A A053516 _Vladeta Jovovic_, Jan 14 2000 %E A053516 a(9) from _Andrew Howroyd_, Oct 22 2017