This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053570 #24 May 31 2018 02:12:48 %S A053570 1,1,2,3,6,5,12,13,18,15,32,21,46,35,42,49,80,49,102,71,88,85,150,89, %T A053570 156,125,164,137,242,113,278,213,230,217,272,191,396,275,320,261,490, %U A053570 237,542,369,386,401,650,355,640,431,560,507,830,449,704,551,696,643 %N A053570 Sum of totient functions over arguments running through reduced residue system of n. %C A053570 Phi summation results over numbers not exceeding n are given in A002088 while summation over the divisor set of n would give n. This is a further way of Phi summation. %C A053570 Equals row sums of triangle A143620. - _Gary W. Adamson_, Aug 27 2008 %H A053570 T. D. Noe, <a href="/A053570/b053570.txt">Table of n, a(n) for n = 1..1000</a> %F A053570 a(n) = Sum_{k>=1} A000010(A038566(n,k)). - _R. J. Mathar_, Jan 09 2017 %e A053570 Given n = 36, its reduced residue system is {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35}; the Euler phi of these terms are {1, 4, 6, 10, 12, 16, 18, 22, 20, 28, 30, 24}. Summation over this last set gives 191. So a(36) = 191. %p A053570 A038566_row := proc(n) %p A053570 a := {} ; %p A053570 for m from 1 to n do %p A053570 if igcd(n,m) =1 then %p A053570 a := a union {m} ; %p A053570 end if; %p A053570 end do: %p A053570 a ; %p A053570 end proc: %p A053570 A053570 := proc(n) %p A053570 add(numtheory[phi](r),r=A038566_row(n)) ; %p A053570 end proc: %p A053570 seq(A053570(n),n=1..30) ; # _R. J. Mathar_, Jan 09 2017 %t A053570 Join[{1}, Table[Sum[EulerPhi[i] * KroneckerDelta[GCD[i, n], 1], {i, n - 1}], {n, 2, 60}]] (* _Alonso del Arte_, Nov 02 2014 *) %Y A053570 Cf. A000010, A002088. %Y A053570 Cf. A143620. - _Gary W. Adamson_, Aug 27 2008 %K A053570 nonn %O A053570 1,3 %A A053570 _Labos Elemer_, Jan 17 2000