cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053570 Sum of totient functions over arguments running through reduced residue system of n.

This page as a plain text file.
%I A053570 #24 May 31 2018 02:12:48
%S A053570 1,1,2,3,6,5,12,13,18,15,32,21,46,35,42,49,80,49,102,71,88,85,150,89,
%T A053570 156,125,164,137,242,113,278,213,230,217,272,191,396,275,320,261,490,
%U A053570 237,542,369,386,401,650,355,640,431,560,507,830,449,704,551,696,643
%N A053570 Sum of totient functions over arguments running through reduced residue system of n.
%C A053570 Phi summation results over numbers not exceeding n are given in A002088 while summation over the divisor set of n would give n. This is a further way of Phi summation.
%C A053570 Equals row sums of triangle A143620. - _Gary W. Adamson_, Aug 27 2008
%H A053570 T. D. Noe, <a href="/A053570/b053570.txt">Table of n, a(n) for n = 1..1000</a>
%F A053570 a(n) = Sum_{k>=1} A000010(A038566(n,k)). - _R. J. Mathar_, Jan 09 2017
%e A053570 Given n = 36, its reduced residue system is {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35}; the Euler phi of these terms are {1, 4, 6, 10, 12, 16, 18, 22, 20, 28, 30, 24}. Summation over this last set gives 191. So a(36) = 191.
%p A053570 A038566_row := proc(n)
%p A053570     a := {} ;
%p A053570     for m from 1 to n do
%p A053570         if igcd(n,m) =1 then
%p A053570             a := a union {m} ;
%p A053570         end if;
%p A053570     end do:
%p A053570     a ;
%p A053570 end proc:
%p A053570 A053570 := proc(n)
%p A053570     add(numtheory[phi](r),r=A038566_row(n)) ;
%p A053570 end proc:
%p A053570 seq(A053570(n),n=1..30) ; # _R. J. Mathar_, Jan 09 2017
%t A053570 Join[{1}, Table[Sum[EulerPhi[i] * KroneckerDelta[GCD[i, n], 1], {i, n - 1}], {n, 2, 60}]] (* _Alonso del Arte_, Nov 02 2014 *)
%Y A053570 Cf. A000010, A002088.
%Y A053570 Cf. A143620. - _Gary W. Adamson_, Aug 27 2008
%K A053570 nonn
%O A053570 1,3
%A A053570 _Labos Elemer_, Jan 17 2000