This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053573 #34 Mar 29 2025 10:51:48 %S A053573 1,5,39,265,1871,13065,91519,640505,4483791,31386025,219703199, %T A053573 1537920345,10765446511,75358117385,527506838079,3692547833785, %U A053573 25847834902031,180934844183145,1266543909544159,8865807366284825,62060651565042351 %N A053573 a(n) = 5*a(n-1) + 14*a(n-2), a(0)=1, a(1)=5. %D A053573 A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196. %D A053573 F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate. %H A053573 G. C. Greubel, <a href="/A053573/b053573.txt">Table of n, a(n) for n = 0..1000</a> %H A053573 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,14). %F A053573 a(n) = (7^(n+1) - (-2)^(n+1))/9. %F A053573 a(n) = 5*a(n-1) + 14*a(n-2), with a(0)=1, a(1)=5. %F A053573 G.f.: 1/(1-5*x-14*x^2). - _Zerinvary Lajos_, Apr 24 2009 %F A053573 E.g.f.: (7*exp(7*x) - 2*exp(-2*x))/9. - _G. C. Greubel_, May 16 2019 %t A053573 LinearRecurrence[{5,14},{1,5},30] (* _Harvey P. Dale_, May 29 2017 *) %o A053573 (Sage) [lucas_number1(n,5,-14) for n in range(1, 16)] # _Zerinvary Lajos_, Apr 24 2009 %o A053573 (PARI) a(n)=n++;(7^n -(-2)^n)/9 \\ _Charles R Greathouse IV_, Jun 11 2011 %o A053573 (Magma) [(7^(n+1) -(-2)^(n+1))/9: n in [0..30]]; // _G. C. Greubel_, May 16 2019 %o A053573 (GAP) List([0..30], n-> (7^(n+1) -(-2)^(n+1))/9); # _G. C. Greubel_, May 16 2019 %Y A053573 Cf. A090409 (binomial transform). %K A053573 easy,nonn %O A053573 0,2 %A A053573 _Barry E. Williams_, Jan 18 2000