cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053578 Values of cototient function for A053577.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 4, 1, 8, 1, 8, 8, 1, 1, 1, 16, 16, 1, 1, 16, 1, 1, 1, 1, 32, 1, 32, 1, 1, 32, 32, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 64, 1, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 128, 1, 1, 1, 1, 1, 128, 1, 1, 1, 1, 1, 128, 1, 128, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Jan 18 2000

Keywords

Comments

Except for 2^0 = 1, there are only finitely many values of k such that cototient(k) = 2^m for fixed m.

Examples

			For p prime, cototient(p) = 1. Smallest values for which cototient(x) = 2^w are A058764(w) = A007283(w-1) = 3*2^(w-1) = 6, 12, 24, 48, 96, 192, .., 49152 for w = 2, 3, 4, 5, 6, ..., 15. [Corrected by _M. F. Hasler_, Nov 10 2016]
		

Crossrefs

Programs

  • Mathematica
    Select[Table[k - EulerPhi[k], {k, 1, 400}], # == 2^IntegerExponent[#, 2] &] (* Amiram Eldar, Jun 09 2024 *)
  • PARI
    lista(kmax) = {my(c); for(k = 2, kmax, c = k - eulerphi(k); if(c >> valuation(c, 2) == 1, print1(c, ", ")));} \\ Amiram Eldar, Jun 09 2024

Extensions

Edited and corrected by M. F. Hasler, Nov 10 2016