This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A053583 #21 Jun 23 2022 13:49:49 %S A053583 3,13,113,2113,12113,612113,11612113,1611612113,111611612113, %T A053583 1111611612113,81111611612113,2181111611612113,132181111611612113, %U A053583 11132181111611612113,3411132181111611612113,413411132181111611612113,12413411132181111611612113 %N A053583 a(n+1) is the smallest prime ending with (but not equal to) a(n), where a(1)=3. %H A053583 Michael S. Branicky, <a href="/A053583/b053583.txt">Table of n, a(n) for n = 1..370</a> (terms 1..210 from Robert Israel) %p A053583 A[1]:= 3; %p A053583 for n from 2 to 100 do %p A053583 d:= 10^(ilog10(A[n-1])+1); %p A053583 for k from 1 do %p A053583 p:= A[n-1]+d*k; %p A053583 if isprime(p) then %p A053583 A[n]:= p; %p A053583 break %p A053583 fi %p A053583 od %p A053583 od: %p A053583 seq(A[n],n=1..100); # _Robert Israel_, Jul 15 2014 %o A053583 (Python) %o A053583 from sympy import isprime %o A053583 from itertools import count, islice %o A053583 def agen(an=3): %o A053583 while True: %o A053583 yield an %o A053583 pow10 = 10**len(str(an)) %o A053583 for t in count(pow10+an, step=pow10): %o A053583 if isprime(t): %o A053583 an = t %o A053583 break %o A053583 print(list(islice(agen(), 17))) # _Michael S. Branicky_, Jun 23 2022 %Y A053583 Cf. A000040, A053582, A053584, A069612. %K A053583 base,nonn %O A053583 1,1 %A A053583 _G. L. Honaker, Jr._, Jan 18 2000 %E A053583 Definition corrected by _Robert Israel_, Jul 15 2014